Error Exponent for Gaussian Channels With Partial Sequential Feedback

This paper studies the error exponent of block coding over an additive white Gaussian noise channel where a fraction (<formula formulatype="inline"><tex Notation="TeX">$f$</tex></formula>) of the channel output symbols are revealed to the transmitter through noiseless feedback. If the code rate exceeds <formula formulatype="inline"><tex Notation="TeX">$fC$</tex></formula>, where <formula formulatype="inline"><tex Notation="TeX">$C$</tex> </formula> is the channel capacity, then the probability of decoding error cannot decay faster than exponentially with block length. However, if the code rate is below <formula formulatype="inline"> <tex Notation="TeX">$fC$</tex></formula>, the error probability can decrease faster than exponentially with the block length, as with full feedback (<formula formulatype="inline"><tex Notation="TeX">$f=1$</tex></formula>). This is achieved by combining a feedback code and a forward error control code, and jointly decoding them at the receiver. This scheme can attain higher reliability than rate splitting in which feedback and forward codes independently encode separate source messages.

[1]  Michael Horstein,et al.  Sequential transmission using noiseless feedback , 1963, IEEE Trans. Inf. Theory.

[2]  Rangasami L. Kashyap Feedback coding schemes for an additive noise channel with a noisy feedback link , 1968, IEEE Trans. Inf. Theory.

[3]  Idan Goldenberg,et al.  Coding for Parallel Channels: Gallager Bounds and Applications to Turbo-Like Codes , 2007, IEEE Transactions on Information Theory.

[4]  Kannan Ramchandran,et al.  Attaining Maximal Reliability with Minimal Feedback via Joint Channel-code and Hash-Function Design , 2005 .

[5]  M. S. Bargh,et al.  Coding for channels with low rate noiseless feedback , 1997, Proceedings of IEEE International Symposium on Information Theory.

[6]  G. H. Smerage The realizability of a coding scheme for additive noise channels with feedback , 1967 .

[7]  J. Pieter M. Schalkwijk,et al.  A coding scheme for additive noise channels with feedback-II: Band-limited signals , 1966, IEEE Trans. Inf. Theory.

[8]  Anthony J. Kramer,et al.  Improving communication reliability by use of an intermittent feedback channel , 1969, IEEE Trans. Inf. Theory.

[9]  Anant Sahai,et al.  Beating Burnashev in delay with noisy feedback , 2006 .

[10]  Aaron D. Wyner,et al.  On the Schalkwijk-Kailath coding scheme with a peak energy constraint , 1968, IEEE Trans. Inf. Theory.

[11]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[12]  Anant Sahai,et al.  (www.interscience.wiley.com) DOI: 10.1002/ett.0000 Variable-length channel coding with noisy feedback , 2022 .

[13]  Meir Feder,et al.  Communication with Feedback via Posterior Matching , 2007, 2007 IEEE International Symposium on Information Theory.

[14]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[15]  Tsachy Weissman,et al.  Bounds on the Error Exponent of the AWGN Channel with AWGN-Corrupted Feedback , 2006, 2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel.

[16]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[17]  J.M. Ooi,et al.  Fast Iterative Coding Techniques for Feedback Channels , 1998, IEEE Trans. Inf. Theory.

[18]  N. Sloane,et al.  Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels. I , 1993 .

[19]  Meir Feder,et al.  The posterior matching feedback scheme: Capacity achieving and error analysis , 2008, 2008 IEEE International Symposium on Information Theory.