High performance organic photovoltaics with plasmonic-coupled metal nanoparticle clusters.

Performance enhancement of organic photovoltaics using plasmonic nanoparticles has been limited without interparticle plasmon coupling. We demonstrate high performance organic photovoltaics employing gold nanoparticle clusters with controlled morphology as a plasmonic component. Near-field coupling at the interparticle gaps of nanoparticle clusters gives rise to strong enhancement in localized electromagnetic field, which led to the significant improvement of exciton generation and dissociation in the active layer of organic solar cells. A power conversion efficiency of 9.48% is attained by employing gold nanoparticle clusters at the bottom of the organic active layer. This is one of the highest efficiency values reported thus far for the single active layer organic photovoltaics.

[1]  Hyung Il Park,et al.  Exciton Dissociation and Charge‐Transport Enhancement in Organic Solar Cells with Quantum‐Dot/N‐doped CNT Hybrid Nanomaterials , 2013, Advanced materials.

[2]  Luping Yu,et al.  The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. , 2013, Nano letters.

[3]  K. Leo,et al.  Direct Electrical Evidence of Plasmonic Near-Field Enhancement in Small Molecule Organic Solar Cells , 2014 .

[4]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[5]  A. Mikhailovsky,et al.  Enhancement of Phosphorescence by Surface‐Plasmon Resonances in Colloidal Metal Nanoparticles: The Role of Aggregates , 2006 .

[6]  Valentin D. Mihailetchi,et al.  Charge Transport and Photocurrent Generation in Poly(3‐hexylthiophene): Methanofullerene Bulk‐Heterojunction Solar Cells , 2006 .

[7]  Xing Wang Zhang,et al.  Plasmonic polymer tandem solar cell. , 2011, ACS nano.

[8]  Yongfang Li,et al.  Improving the Ordering and Photovoltaic Properties by Extending π–Conjugated Area of Electron‐Donating Units in Polymers with D‐A Structure , 2012, Advanced materials.

[9]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[10]  R. Friend,et al.  Formation of nanopatterned polymer blends in photovoltaic devices. , 2010, Nano letters.

[11]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[12]  Luping Yu,et al.  Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. , 2013, Nano letters.

[13]  Wei E. I. Sha,et al.  Efficiency Enhancement of Organic Solar Cells by Using Shape‐Dependent Broadband Plasmonic Absorption in Metallic Nanoparticles , 2013 .

[14]  Naomi J Halas,et al.  Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. , 2011, Nano letters.

[15]  Yong Cao,et al.  Largely Enhanced Efficiency with a PFN/Al Bilayer Cathode in High Efficiency Bulk Heterojunction Photovoltaic Cells with a Low Bandgap Polycarbazole Donor , 2011, Advanced materials.

[16]  Alan J. Heeger,et al.  Enhanced Power Conversion Efficiency in PCDTBT/PC70BM Bulk Heterojunction Photovoltaic Devices with Embedded Silver Nanoparticle Clusters , 2011 .

[17]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[18]  F J García de Abajo,et al.  Quantum plexcitonics: strongly interacting plasmons and excitons. , 2011, Nano letters.

[19]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[20]  M E Abdelsalam,et al.  Strong coupling between localized plasmons and organic excitons in metal nanovoids. , 2006, Physical review letters.

[21]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[22]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[23]  Donal D. C. Bradley,et al.  A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells , 2006 .

[24]  Chain‐Shu Hsu,et al.  Solution-processed nanocomposites containing molybdenum oxide and gold nanoparticles as anode buffer layers in plasmonic-enhanced organic photovoltaic devices. , 2013, ACS applied materials & interfaces.

[25]  S. Ochiai,et al.  Examining the effect of additives and thicknesses of hole transport layer for efficient organic solar cell devices , 2013, Electronic Materials Letters.

[26]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[27]  Gang Li,et al.  10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub‐Cells , 2013, Advanced materials.

[28]  C. Brabec,et al.  Enhanced dissociation of charge-transfer states in narrow band gap polymer:fullerene solar cells processed with 1,8-octanedithiol , 2010 .

[29]  Jung-Yong Lee,et al.  Plasmonic Forward Scattering Effect in Organic Solar Cells: A Powerful Optical Engineering Method , 2013, Scientific Reports.

[30]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[31]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[32]  D. Bradley,et al.  Efficient Organic Solar Cells with Solution‐Processed Silver Nanowire Electrodes , 2011, Advanced materials.

[33]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[34]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[35]  李轩华,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012 .

[36]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[37]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[38]  G. Bazan,et al.  Post‐Deposition Treatment of an Arylated‐Carbazole Conjugated Polymer for Solar Cell Fabrication , 2012, Advanced materials.

[39]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[40]  D. Ginger,et al.  Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. , 2010, Nano letters.

[41]  R. G. Freeman,et al.  Preparation and Characterization of Au Colloid Monolayers , 1995 .

[42]  Tae-Woo Lee,et al.  Soluble self-doped conducting polymer compositions with tunable work function as hole injection/extraction layers in organic optoelectronics. , 2011, Angewandte Chemie.

[43]  Fan-Ching Chien,et al.  Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. , 2011, ACS nano.

[44]  S. Kim,et al.  Selective Electron‐ or Hole‐Transport Enhancement in Bulk‐Heterojunction Organic Solar Cells with N‐ or B‐Doped Carbon Nanotubes , 2011, Advanced materials.

[45]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[46]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[47]  F. Liu,et al.  Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. , 2011, Nano letters.

[48]  M. N. Kamalasanan,et al.  Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon , 2012 .

[49]  Mansoo Choi,et al.  Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. , 2014, ACS nano.

[50]  Chun-Hsien Chou,et al.  Plasmonic nanostructures for light trapping in organic photovoltaic devices. , 2014, Nanoscale.

[51]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[52]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[53]  Yang Yang,et al.  A Selenium‐Substituted Low‐Bandgap Polymer with Versatile Photovoltaic Applications , 2013, Advanced materials.

[54]  R. Service,et al.  Solar energy. Outlook brightens for plastic solar cells. , 2011, Science.

[55]  Fei Huang,et al.  Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells , 2012 .

[56]  B. Lee,et al.  Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices , 2013, Nature Photonics.

[57]  O Ok Park,et al.  Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. , 2011, Angewandte Chemie.

[58]  Davide Bartesaghi,et al.  Device physics of polymer:fullerene bulk heterojunction solar cells , 2016 .

[59]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .

[60]  C. Chu,et al.  Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices. , 2014, Nanoscale.

[61]  Qiaoqiang Gan,et al.  Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier , 2013, Advanced materials.

[62]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[63]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[64]  Jin Young Kim,et al.  Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. , 2013, Nano letters.

[65]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.