Minimal functions on the random graph

We show that there is a system of 14 non-trivial finitary functions on the random graph with the following properties: Any non-trivial function on the random graph generates one of the functions of this system by means of composition with automorphisms and by topological closure, and the system is minimal in the sense that no subset of the system has the same property. The theorem is obtained by proving a Ramsey-type theorem for colorings of tuples in finite powers of the random graph, and by applying this to find regular patterns in the behavior of any function on the random graph. As model-theoretic corollaries of our methods we rederive a theorem of Simon Thomas classifying the first-order closed reducts of the random graph, and prove some refinements of this theorem; also, we obtain a classification of the maximal reducts closed under primitive positive definitions, and prove that all reducts of the random graph are model-complete.

[1]  Peter J. Cameron,et al.  The Random Graph Revisited , 2001 .

[2]  J. Spencer Ramsey Theory , 1990 .

[3]  Michael Pinsker,et al.  Topological Birkhoff , 2012, ArXiv.

[4]  Peter Jonsson,et al.  Horn versus full first-order: Complexity dichotomies in algebraic constraint satisfaction , 2010, J. Log. Comput..

[5]  Manuel Bodirsky,et al.  The Complexity of Equality Constraint Languages , 2006, CSR.

[6]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[7]  P. Cameron Transitivity of permutation groups on unordered sets , 1976 .

[8]  Vojtech Rödl,et al.  Partitions of Finite Relational and Set Systems , 1977, J. Comb. Theory A.

[9]  Simon Thomas,et al.  Reducts of the random graph , 1991, Journal of Symbolic Logic.

[10]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[11]  Anthony Bonato,et al.  All countable monoids embed into the monoid of the infinite random graph , 2010, Discret. Math..

[12]  Leo Harrington,et al.  Models Without Indiscernibles , 1978, J. Symb. Log..

[13]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[14]  Jaroslav Nesetril,et al.  Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..

[15]  Manuel Bodirsky,et al.  Maximal Infinite-Valued Constraint Languages , 2007, ICALP.

[16]  Michael Pinsker,et al.  Reducts of Ramsey structures , 2011, AMS-ASL Joint Special Session.

[17]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[18]  Jaroslav Nešetřil Ramsey theory , 1996 .

[19]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[20]  Manuel Bodirsky,et al.  The complexity of temporal constraint satisfaction problems , 2010, JACM.

[21]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[22]  Anthony Bonato,et al.  The Monoid of the Random Graph , 2000 .

[23]  Markus Junker,et al.  The 116 reducts of (ℚ, <, a) , 2008, Journal of Symbolic Logic.

[24]  Michael Pinsker More Sublattices of the Lattice of Local Clones , 2010, Order.

[25]  Markus Junker,et al.  The 116 reducts of (Q, <, a) , 2008, J. Symb. Log..

[26]  Martin Goldstern,et al.  A survey of clones on infinite sets , 2006 .

[27]  M. Pinsker Sublattices of the lattice of local clones , 2008, 0801.2392.

[28]  Vojtech Rödl,et al.  Ramsey Classes of Set Systems , 1983, J. Comb. Theory, Ser. A.

[29]  Steven Awodey,et al.  Lawvere–Tierney sheaves in Algebraic Set Theory , 2007, The Journal of Symbolic Logic.

[30]  Igor Dolinka,et al.  The Endomorphism Monoid of the Random Graph has Uncountably Many Ideals , 2004 .

[31]  Schaefer's theorem for graphs , 2011, STOC '11.

[32]  Manuel Bodirsky,et al.  Oligomorphic clones , 2007 .

[33]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[34]  Michael Pinsker,et al.  The reducts of equality up to primitive positive interdefinability , 2010, J. Symb. Log..

[35]  Simon Thomas,et al.  Reducts of Random Hypergraphs , 1996, Ann. Pure Appl. Log..