GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time
暂无分享,去创建一个
S. Capozziello | H. Falcke | T. Piran | M. Branchesi | E. Coccia | M. De Laurentis | M. Colpi | M. Feroci | E. Costa | F. Frontera | M. Valle | G. Lodato | C. Rovelli | K. Hurley | P. de Bernardis | D. Kataria | G. Ghisellini | F. Fiore | L. Burderi | L. Amati | C. Labanti | A. Santangelo | S. Zane | A. Papitto | N. D'amico | R. Iaria | A. Riggio | M. De Laurentis | F. Vidotto | A. Sanna | B. Negri | T. Di Salvo | M. D. Valle | A. Gambino | G. Amelino-Camelia | T. di Salvo | P. De Bernardis
[1] L. Burderi,et al. GrailQuest and HERMES: hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam , 2021, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray.
[2] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[3] S. Pirrotta,et al. The HERMES-technologic and scientific pathfinder , 2020, Astronomical Telescopes + Instrumentation.
[4] T. Salvo,et al. Accretion powered X-ray millisecond pulsars , 2020, 2010.09005.
[5] Y. N. Liu,et al. Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).
[6] Xin Wu,et al. Detailed polarization measurements of the prompt emission of five gamma-ray bursts , 2019, Nature Astronomy.
[7] G. Lodato,et al. A loud quasi-periodic oscillation after a star is disrupted by a massive black hole , 2018, Science.
[8] R. Konoplich,et al. Robust constraint on Lorentz violation using Fermi-LAT gamma-ray burst data , 2018, Physical Review D.
[9] D. R. Lorimer,et al. A decade of fast radio bursts , 2018, Nature Astronomy.
[10] S. Campana,et al. Accreting Pulsars: Mixing-up Accretion Phases in Transitional Systems , 2018, 1804.03422.
[11] Martin Hendry,et al. Binary neutron star mergers and third generation detectors: Localization and early warning , 2018, Physical Review D.
[12] Cnrs,et al. Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates , 2018, 1803.05009.
[13] Xuefeng Wu,et al. A Further Test of Lorentz Violation from the Rest-frame Spectral Lags of Gamma-Ray Bursts , 2017, 1711.09185.
[14] B. A. Boom,et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.
[15] T. Sakamoto,et al. The X-ray counterpart to the gravitational-wave event GW170817 , 2017, Nature.
[16] Texas Tech University,et al. Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.
[17] P. B. Covas,et al. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.
[18] B. A. Boom,et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.
[19] Ilya Mandel,et al. University of Birmingham Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves , 2017 .
[20] B. A. Boom,et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.
[21] G. Amelino-Camelia,et al. In vacuo dispersion features for gamma-ray-burst neutrinos and photons , 2016, Nature Astronomy.
[22] P. Brun,et al. Limits on Lorentz invariance violation at the Planck energy scale from H.E.S.S. spectral analysis of the blazar Mrk 501 , 2016, 1606.08600.
[23] Yuta Michimura,et al. Tests of Lorentz Invariance , 2017 .
[24] B. Ma,et al. Light speed variation from gamma ray burst GRB 160509A , 2016, 1607.08043.
[25] B. Ma,et al. Light speed variation from gamma-ray bursts , 2016, 1607.03203.
[26] Eric Burns,et al. THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS , 2016, 1603.07612.
[27] The Ligo Scientific Collaboration,et al. Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.
[28] A. B. Danilet,et al. Six months of multiwavelength follow-up of the tidal disruption candidate asassn-14li and implied tde rates from asas-sn , 2015, 1507.01598.
[29] L. Burderi,et al. Quantum clock: A critical discussion on spacetime , 2012, 1603.03723.
[30] G. Amelino-Camelia,et al. Planck-scale-modified dispersion relations in FRW spacetime , 2015, 1507.02056.
[31] S. Capozziello,et al. The emission of Gamma Ray Bursts as a test-bed for modified gravity , 2015, 1504.03900.
[32] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[33] M. Revnivtsev. Measurements of the cosmic X-ray background of the Universe and the MVN experiment , 2014, 1410.3284.
[34] C. Rovelli,et al. Fast Radio Bursts and White Hole Signals , 2014, 1409.4031.
[35] R. Preece,et al. BATSE Observations of Gamma-Ray Burst Spectra , 2013 .
[36] Stefano Liberati,et al. Tests of Lorentz invariance: a 2013 update , 2013, 1304.5795.
[37] C. Guidorzi,et al. Average power density spectrum of long GRBs detected with BeppoSAX/GRBM and with Fermi/GBM , 2013, 1303.2584.
[38] S. Hossenfelder. Minimal Length Scale Scenarios for Quantum Gravity , 2012, Living reviews in relativity.
[39] D. C. Morris,et al. Minimum variability time-scales of long and short GRBs , 2012, 1201.4431.
[40] A. J. van der Horst,et al. TEMPORAL DECONVOLUTION STUDY OF LONG AND SHORT GAMMA-RAY BURST LIGHT CURVES , 2011, 1109.4064.
[41] S. Capozziello,et al. Extended Theories of Gravity , 2011, 1108.6266.
[42] David E. Bloom,et al. 7 Billion and Counting , 2011, Science.
[43] T. Sakamoto,et al. A PHOTOMETRIC REDSHIFT OF z ∼ 9.4 FOR GRB 090429B , 2011, 1105.4915.
[44] Davide Lazzati,et al. THE ORIGIN AND PROPAGATION OF VARIABILITY IN THE OUTFLOWS OF LONG-DURATION GAMMA-RAY BURSTS , 2010, 1002.0361.
[45] R. E. Hughes,et al. A limit on the variation of the speed of light arising from quantum gravity effects , 2009, Nature.
[46] Fermi Gbmlat Collaborations. Testing Einstein's special relativity with Fermi's short hard gamma-ray burst GRB090510 , 2009, 0908.1832.
[47] Roland Diehl,et al. THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.
[48] Lee Smolin,et al. Prospects for constraining quantum gravity dispersion with near term observations , 2009, 0906.3731.
[49] E. S. Phinney,et al. Finding and Using Electromagnetic Counterparts of Gravitational Wave Sources , 2009, 0903.0098.
[50] D. L. Starr,et al. OBSERVATIONS OF THE NAKED-EYE GRB 080319B: IMPLICATIONS OF NATURE'S BRIGHTEST EXPLOSION , 2008, 0803.3215.
[51] J. Harnad. The trouble with Physics: The rise of string theory, the fall of a Science, and what comes next , 2008 .
[52] Using BATSE to measure gamma-ray burst polarization , 2008 .
[53] Tsvi Piran,et al. Lorentz-violation-induced arrival delays of cosmological particles , 2007, 0712.2170.
[54] Carlo Rovelli,et al. Loop Quantum Gravity , 2008, Living Reviews in Relativity.
[55] A. Ashtekar,et al. Quantum theory of geometry , 2008 .
[56] David Mattingly,et al. Modern Tests of Lorentz Invariance , 2005, Living reviews in relativity.
[57] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[58] A. Einstein. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.
[59] Scott D. Barthelmy,et al. The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.
[60] E. Sterl Phinney,et al. Gravitational Waves and X-Ray Signals from Stellar Disruption by a Massive Black Hole , 2004, astro-ph/0404173.
[61] B. Ramsey,et al. IBIS: The Imager on-board INTEGRAL , 2003 .
[62] C. Rovelli,et al. Reconcile Planck scale discreteness and the Lorentz-Fitzgerald contraction , 2002, gr-qc/0205108.
[63] T. Piran,et al. Gamma-Ray Burst Light Curves—Another Clue on the Inner Engine , 2002, astro-ph/0202404.
[64] R. Schneider,et al. Gamma-ray bursts from the first stars: neutrino signals , 2002, astro-ph/0201342.
[65] R. Penrose,et al. Gravitational Collapse : The Role of General Relativity 1 , 2002 .
[66] U. Heinzmann,et al. Attosecond metrology , 2007, Nature.
[67] S. Savaglio,et al. Probing the Warm Intergalactic Medium through Absorption against Gamma-Ray Burst X-Ray Afterglows , 2000, astro-ph/0009292.
[68] E. Ramirez-Ruiz,et al. Pulse Width Evolution in Gamma-Ray Bursts: Evidence for Internal Shocks , 1999, astro-ph/9910273.
[69] P. Mészáros,et al. Analysis of Temporal Features of Gamma-Ray Bursts in the Internal Shock Model , 1999, astro-ph/9908097.
[70] G. Amelino-Camelia. Are We at the Dawn of Quantum-Gravity Phenomenology? , 1999, gr-qc/9910089.
[71] E. Fenimore,et al. Gamma-Ray Bursts Have Millisecond Variability , 1998, astro-ph/9810271.
[72] John Ellis,et al. Tests of quantum gravity from observations of γ-ray bursts , 1998, Nature.
[73] Carlo Rovelli,et al. Loop Quantum Gravity , 1997, Living reviews in relativity.
[74] T. Yoneya. D-Particles, D-Instantons, and A Space-Time Uncertainty Principle in String Theory , 1997, hep-th/9707002.
[75] S. Djorgovski,et al. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997 , 1997, Nature.
[76] L. A. Antonelli,et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997 , 1997, Nature.
[77] T. Piran,et al. Can Internal Shocks Produce the Variability in Gamma-Ray Bursts? , 1997, astro-ph/9705013.
[78] C. Kouveliotou,et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997 , 1997, Nature.
[79] T. Piran,et al. Cosmological gamma-ray bursts: internal versus external shocks , 1996, astro-ph/9608152.
[80] Quantum theory of geometry: I. Area operators , 1996, gr-qc/9602046.
[81] John E. Roberts,et al. The quantum structure of spacetime at the Planck scale and quantum fields , 1995, hep-th/0303037.
[82] Luis Javier Garay Elizondo,et al. Quantum-gravity and minimum length , 1995 .
[83] C. Rovelli,et al. Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.
[84] C. Rovelli. A Generally covariant quantum field theory and a prediction on quantum measurements of geometry , 1993 .
[85] D. Palmer,et al. BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .
[86] T. Yoneya. On the interpretation of minimal length in string theories , 1989 .
[87] Rovelli,et al. Knot theory and quantum gravity. , 1988, Physical review letters.
[88] Carlo Rovelli,et al. Loop space representation of quantum general relativity , 1988 .
[89] Martin J. Rees,et al. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.
[90] H. V. Borzeszkowski,et al. The meaning of quantum gravity , 1987 .
[91] Jeanette G. Grasselli,et al. “On the Relative Motion of the Earth and the Luminiferous Ether” , 1987 .
[92] C. Mead,et al. Possible Connection Between Gravitation and Fundamental Length , 1964 .
[93] P. W. Bridgman. The Logic of Modern Physics , 1927 .
[94] A. Einstein. Zur Elektrodynamik bewegter Körper , 1905 .
[95] B. Russell. The Principles of Mathematics , 1938 .
[96] M. Planck. Ueber irreversible Strahlungsvorgänge , 1900 .
[97] A. Michelson,et al. On the relative motion of the Earth and the luminiferous ether , 1887, American Journal of Science.