GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time

[1]  L. Burderi,et al.  GrailQuest and HERMES: hunting for gravitational wave electromagnetic counterparts and probing space-time quantum foam , 2021, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray.

[2]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[3]  S. Pirrotta,et al.  The HERMES-technologic and scientific pathfinder , 2020, Astronomical Telescopes + Instrumentation.

[4]  T. Salvo,et al.  Accretion powered X-ray millisecond pulsars , 2020, 2010.09005.

[5]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[6]  Xin Wu,et al.  Detailed polarization measurements of the prompt emission of five gamma-ray bursts , 2019, Nature Astronomy.

[7]  G. Lodato,et al.  A loud quasi-periodic oscillation after a star is disrupted by a massive black hole , 2018, Science.

[8]  R. Konoplich,et al.  Robust constraint on Lorentz violation using Fermi-LAT gamma-ray burst data , 2018, Physical Review D.

[9]  D. R. Lorimer,et al.  A decade of fast radio bursts , 2018, Nature Astronomy.

[10]  S. Campana,et al.  Accreting Pulsars: Mixing-up Accretion Phases in Transitional Systems , 2018, 1804.03422.

[11]  Martin Hendry,et al.  Binary neutron star mergers and third generation detectors: Localization and early warning , 2018, Physical Review D.

[12]  Cnrs,et al.  Tidal disruption of stars in a supermassive black hole binary system: the influence of orbital properties on fallback and accretion rates , 2018, 1803.05009.

[13]  Xuefeng Wu,et al.  A Further Test of Lorentz Violation from the Rest-frame Spectral Lags of Gamma-Ray Bursts , 2017, 1711.09185.

[14]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[15]  T. Sakamoto,et al.  The X-ray counterpart to the gravitational-wave event GW170817 , 2017, Nature.

[16]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[17]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[18]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[19]  Ilya Mandel,et al.  University of Birmingham Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves , 2017 .

[20]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[21]  G. Amelino-Camelia,et al.  In vacuo dispersion features for gamma-ray-burst neutrinos and photons , 2016, Nature Astronomy.

[22]  P. Brun,et al.  Limits on Lorentz invariance violation at the Planck energy scale from H.E.S.S. spectral analysis of the blazar Mrk 501 , 2016, 1606.08600.

[23]  Yuta Michimura,et al.  Tests of Lorentz Invariance , 2017 .

[24]  B. Ma,et al.  Light speed variation from gamma ray burst GRB 160509A , 2016, 1607.08043.

[25]  B. Ma,et al.  Light speed variation from gamma-ray bursts , 2016, 1607.03203.

[26]  Eric Burns,et al.  THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS , 2016, 1603.07612.

[27]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[28]  A. B. Danilet,et al.  Six months of multiwavelength follow-up of the tidal disruption candidate asassn-14li and implied tde rates from asas-sn , 2015, 1507.01598.

[29]  L. Burderi,et al.  Quantum clock: A critical discussion on spacetime , 2012, 1603.03723.

[30]  G. Amelino-Camelia,et al.  Planck-scale-modified dispersion relations in FRW spacetime , 2015, 1507.02056.

[31]  S. Capozziello,et al.  The emission of Gamma Ray Bursts as a test-bed for modified gravity , 2015, 1504.03900.

[32]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[33]  M. Revnivtsev Measurements of the cosmic X-ray background of the Universe and the MVN experiment , 2014, 1410.3284.

[34]  C. Rovelli,et al.  Fast Radio Bursts and White Hole Signals , 2014, 1409.4031.

[35]  R. Preece,et al.  BATSE Observations of Gamma-Ray Burst Spectra , 2013 .

[36]  Stefano Liberati,et al.  Tests of Lorentz invariance: a 2013 update , 2013, 1304.5795.

[37]  C. Guidorzi,et al.  Average power density spectrum of long GRBs detected with BeppoSAX/GRBM and with Fermi/GBM , 2013, 1303.2584.

[38]  S. Hossenfelder Minimal Length Scale Scenarios for Quantum Gravity , 2012, Living reviews in relativity.

[39]  D. C. Morris,et al.  Minimum variability time-scales of long and short GRBs , 2012, 1201.4431.

[40]  A. J. van der Horst,et al.  TEMPORAL DECONVOLUTION STUDY OF LONG AND SHORT GAMMA-RAY BURST LIGHT CURVES , 2011, 1109.4064.

[41]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[42]  David E. Bloom,et al.  7 Billion and Counting , 2011, Science.

[43]  T. Sakamoto,et al.  A PHOTOMETRIC REDSHIFT OF z ∼ 9.4 FOR GRB 090429B , 2011, 1105.4915.

[44]  Davide Lazzati,et al.  THE ORIGIN AND PROPAGATION OF VARIABILITY IN THE OUTFLOWS OF LONG-DURATION GAMMA-RAY BURSTS , 2010, 1002.0361.

[45]  R. E. Hughes,et al.  A limit on the variation of the speed of light arising from quantum gravity effects , 2009, Nature.

[46]  Fermi Gbmlat Collaborations Testing Einstein's special relativity with Fermi's short hard gamma-ray burst GRB090510 , 2009, 0908.1832.

[47]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[48]  Lee Smolin,et al.  Prospects for constraining quantum gravity dispersion with near term observations , 2009, 0906.3731.

[49]  E. S. Phinney,et al.  Finding and Using Electromagnetic Counterparts of Gravitational Wave Sources , 2009, 0903.0098.

[50]  D. L. Starr,et al.  OBSERVATIONS OF THE NAKED-EYE GRB 080319B: IMPLICATIONS OF NATURE'S BRIGHTEST EXPLOSION , 2008, 0803.3215.

[51]  J. Harnad The trouble with Physics: The rise of string theory, the fall of a Science, and what comes next , 2008 .

[52]  Using BATSE to measure gamma-ray burst polarization , 2008 .

[53]  Tsvi Piran,et al.  Lorentz-violation-induced arrival delays of cosmological particles , 2007, 0712.2170.

[54]  Carlo Rovelli,et al.  Loop Quantum Gravity , 2008, Living Reviews in Relativity.

[55]  A. Ashtekar,et al.  Quantum theory of geometry , 2008 .

[56]  David Mattingly,et al.  Modern Tests of Lorentz Invariance , 2005, Living reviews in relativity.

[57]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[58]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[59]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[60]  E. Sterl Phinney,et al.  Gravitational Waves and X-Ray Signals from Stellar Disruption by a Massive Black Hole , 2004, astro-ph/0404173.

[61]  B. Ramsey,et al.  IBIS: The Imager on-board INTEGRAL , 2003 .

[62]  C. Rovelli,et al.  Reconcile Planck scale discreteness and the Lorentz-Fitzgerald contraction , 2002, gr-qc/0205108.

[63]  T. Piran,et al.  Gamma-Ray Burst Light Curves—Another Clue on the Inner Engine , 2002, astro-ph/0202404.

[64]  R. Schneider,et al.  Gamma-ray bursts from the first stars: neutrino signals , 2002, astro-ph/0201342.

[65]  R. Penrose,et al.  Gravitational Collapse : The Role of General Relativity 1 , 2002 .

[66]  U. Heinzmann,et al.  Attosecond metrology , 2007, Nature.

[67]  S. Savaglio,et al.  Probing the Warm Intergalactic Medium through Absorption against Gamma-Ray Burst X-Ray Afterglows , 2000, astro-ph/0009292.

[68]  E. Ramirez-Ruiz,et al.  Pulse Width Evolution in Gamma-Ray Bursts: Evidence for Internal Shocks , 1999, astro-ph/9910273.

[69]  P. Mészáros,et al.  Analysis of Temporal Features of Gamma-Ray Bursts in the Internal Shock Model , 1999, astro-ph/9908097.

[70]  G. Amelino-Camelia Are We at the Dawn of Quantum-Gravity Phenomenology? , 1999, gr-qc/9910089.

[71]  E. Fenimore,et al.  Gamma-Ray Bursts Have Millisecond Variability , 1998, astro-ph/9810271.

[72]  John Ellis,et al.  Tests of quantum gravity from observations of γ-ray bursts , 1998, Nature.

[73]  Carlo Rovelli,et al.  Loop Quantum Gravity , 1997, Living reviews in relativity.

[74]  T. Yoneya D-Particles, D-Instantons, and A Space-Time Uncertainty Principle in String Theory , 1997, hep-th/9707002.

[75]  S. Djorgovski,et al.  Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997 , 1997, Nature.

[76]  L. A. Antonelli,et al.  Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997 , 1997, Nature.

[77]  T. Piran,et al.  Can Internal Shocks Produce the Variability in Gamma-Ray Bursts? , 1997, astro-ph/9705013.

[78]  C. Kouveliotou,et al.  Transient optical emission from the error box of the γ-ray burst of 28 February 1997 , 1997, Nature.

[79]  T. Piran,et al.  Cosmological gamma-ray bursts: internal versus external shocks , 1996, astro-ph/9608152.

[80]  Quantum theory of geometry: I. Area operators , 1996, gr-qc/9602046.

[81]  John E. Roberts,et al.  The quantum structure of spacetime at the Planck scale and quantum fields , 1995, hep-th/0303037.

[82]  Luis Javier Garay Elizondo,et al.  Quantum-gravity and minimum length , 1995 .

[83]  C. Rovelli,et al.  Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.

[84]  C. Rovelli A Generally covariant quantum field theory and a prediction on quantum measurements of geometry , 1993 .

[85]  D. Palmer,et al.  BATSE observations of gamma-ray burst spectra. I: Spectral diversity , 1993 .

[86]  T. Yoneya On the interpretation of minimal length in string theories , 1989 .

[87]  Rovelli,et al.  Knot theory and quantum gravity. , 1988, Physical review letters.

[88]  Carlo Rovelli,et al.  Loop space representation of quantum general relativity , 1988 .

[89]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[90]  H. V. Borzeszkowski,et al.  The meaning of quantum gravity , 1987 .

[91]  Jeanette G. Grasselli,et al.  “On the Relative Motion of the Earth and the Luminiferous Ether” , 1987 .

[92]  C. Mead,et al.  Possible Connection Between Gravitation and Fundamental Length , 1964 .

[93]  P. W. Bridgman The Logic of Modern Physics , 1927 .

[94]  A. Einstein Zur Elektrodynamik bewegter Körper , 1905 .

[95]  B. Russell The Principles of Mathematics , 1938 .

[96]  M. Planck Ueber irreversible Strahlungsvorgänge , 1900 .

[97]  A. Michelson,et al.  On the relative motion of the Earth and the luminiferous ether , 1887, American Journal of Science.