Addressing free fatty acid receptor 1 (FFAR1) activation using supervised molecular dynamics

The free fatty acid receptor 1 (FFAR1, formerly GPR40), is a potential G protein-coupled receptor (GPCR) target for the treatment of type 2 diabetes mellitus (T2DM), as it enhances glucose-dependent insulin secretion upon activation by endogenous long-chain free fatty acids. The presence of two allosterically communicating binding sites and the lack of the conserved GPCR structural motifs challenge the general knowledge of its activation mechanism. To date, four X-ray crystal structures are available for computer-aided drug design. In this study, we employed molecular dynamics (MD) and supervised molecular dynamics (SuMD) to deliver insights into the (un)binding mechanism of the agonist MK-8666, and the allosteric communications between the two experimentally determined FFAR1 binding sites. We found that FFAR1 extracellular loop 2 (ECL2) mediates the binding of the partial agonist MK-8666. Moreover, simulations showed that the agonists MK-8666 and AP8 are reciprocally stabilized and that AP8 influences MK-8666 unbinding from FFAR1.

[1]  Wen-long Huang,et al.  Free Fatty Acid Receptor 1 (FFAR1) as an Emerging Therapeutic Target for Type 2 Diabetes Mellitus: Recent Progress and Prevailing Challenges , 2018, Medicinal research reviews.

[2]  K. Lindorff-Larsen,et al.  Molecular dynamics-guided discovery of an ago-allosteric modulator for GPR40/FFAR1 , 2019, Proceedings of the National Academy of Sciences.

[3]  Klaus Schulten,et al.  Rapid parameterization of small molecules using the force field toolkit , 2013, J. Comput. Chem..

[4]  Stefano Moro,et al.  Supervised Molecular Dynamics (SuMD) as a Helpful Tool To Depict GPCR-Ligand Recognition Pathway in a Nanosecond Time Scale , 2014, J. Chem. Inf. Model..

[5]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[6]  Massimiliano Bonomi,et al.  PLUMED 2: New feathers for an old bird , 2013, Comput. Phys. Commun..

[7]  I. Tikhonova Application of GPCR Structures for Modelling of Free Fatty Acid Receptors. , 2016, Handbook of experimental pharmacology.

[8]  W. Weis,et al.  The Molecular Basis of G Protein-Coupled Receptor Activation. , 2018, Annual review of biochemistry.

[9]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[10]  L. Pardo,et al.  The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor , 2016, Scientific Reports.

[11]  B. Olde,et al.  A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. , 2003, Biochemical and biophysical research communications.

[12]  Naomi R. Latorraca,et al.  GPCR Dynamics: Structures in Motion. , 2017, Chemical reviews.

[13]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[14]  A. R. Miller,et al.  Structural basis for GPR40 allosteric agonism and incretin stimulation , 2018, Nature Communications.

[15]  S. Genheden,et al.  The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities , 2015, Expert opinion on drug discovery.

[16]  J. Simms,et al.  Lifting the lid on GPCRs: the role of extracellular loops , 2011, British journal of pharmacology.

[17]  Slawomir Filipek,et al.  Hydrophobic Ligand Entry and Exit Pathways of the CB1 Cannabinoid Receptor , 2016, J. Chem. Inf. Model..

[18]  Chris de Graaf,et al.  Generic GPCR residue numbers - aligning topology maps while minding the gaps. , 2015, Trends in pharmacological sciences.

[19]  Bas Vroling,et al.  GPCRdb: an information system for G protein-coupled receptors , 2015, Nucleic Acids Res..

[20]  B. Hudson,et al.  Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists , 2014, Front. Endocrinol..

[21]  M J Harvey,et al.  ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. , 2009, Journal of chemical theory and computation.

[22]  I. Tikhonova,et al.  Free fatty acid receptors: structural models and elucidation of ligand binding interactions , 2015, BMC Structural Biology.

[23]  Zengrui Wu,et al.  Computational Insights into Molecular Activation and Positive Cooperative Mechanisms of FFAR1 Modulators , 2020, J. Chem. Inf. Model..

[24]  Vadim Cherezov,et al.  Allosteric sodium in class A GPCR signaling. , 2014, Trends in biochemical sciences.

[25]  C. Burant,et al.  TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial , 2012, The Lancet.

[26]  Björn Sommer,et al.  Membrane Packing Problems: A short Review on computational Membrane Modeling Methods and Tools , 2013, Computational and structural biotechnology journal.

[27]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[28]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[29]  Anthony Ivetac,et al.  High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875 , 2014, Nature.

[30]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[31]  Sujata Sharma,et al.  Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40 , 2017, Nature Structural &Molecular Biology.

[32]  G. V. van Westen,et al.  Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. , 2011, Trends in pharmacological sciences.

[33]  Stefano Moro,et al.  Deciphering the Complexity of Ligand-Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD) Simulations , 2016, J. Chem. Inf. Model..

[34]  Gert Vriend,et al.  GPCRDB information system for G protein-coupled receptors , 2003, Nucleic Acids Res..

[35]  K. Takeuchi,et al.  A Novel Antidiabetic Drug, Fasiglifam/TAK-875, Acts as an Ago-Allosteric Modulator of FFAR1 , 2013, PloS one.

[36]  M. Gershengorn,et al.  Two Arginine-Glutamate Ionic Locks Near the Extracellular Surface of FFAR1 Gate Receptor Activation* , 2009, Journal of Biological Chemistry.

[37]  G. Bertrand,et al.  β-Arrestin Recruitment and Biased Agonism at Free Fatty Acid Receptor 1* , 2015, The Journal of Biological Chemistry.

[38]  Sean P. Brown,et al.  Identification and Pharmacological Characterization of Multiple Allosteric Binding Sites on the Free Fatty Acid 1 Receptor , 2012, Molecular Pharmacology.

[39]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[40]  H. Edlund,et al.  Gpr40 Is Expressed in Enteroendocrine Cells and Mediates Free Fatty Acid Stimulation of Incretin Secretion , 2008, Diabetes.

[41]  Frank Noé,et al.  HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. , 2016, Journal of chemical theory and computation.

[42]  Masataka Harada,et al.  Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40 , 2003, Nature.

[43]  B. Brooks,et al.  Langevin dynamics of peptides: The frictional dependence of isomerization rates of N‐acetylalanyl‐N′‐methylamide , 1992, Biopolymers.

[44]  Stefano Moro,et al.  A Supervised Molecular Dynamics Approach to Unbiased Ligand-Protein Unbinding , 2020, J. Chem. Inf. Model..

[45]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[46]  Holger Gohlke,et al.  MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. , 2012, Journal of chemical theory and computation.

[47]  Jing Huang,et al.  CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data , 2013, J. Comput. Chem..