Electrospinning carbon nanotube polymer composite nanofibers

The unique and exceptional physical properties of carbon nanotubes have inspired their use as a filler within a polymeric matrix to produce carbon nanotube polymer composites with enhanced mechanical, thermal and electrical properties. A powerful method of synthesising nanofibers comprising these polymer composites is electrospinning, which utilises an applied electric stress to draw out a thin nanometer-dimension fiber from the tip of a sharp conical meniscus. The focussing of the flow due to converging streamlines at the cone vertex then ensures alignment of the carbon nanotubes along the fiber axis, thus enabling the anisotropic properties of the nanotubes to be exploited. We consider the work that has been carried out to date on various aspects encompassing preprocessing, synthesis and characterisation of these electrospun polymer composite nanofibers as well as the governing mechanisms and associated properties of such fibers. Particular attention is also dedicated to the theoretical modelling of these fiber systems, in particular to the electrohydrodynamic modelling of electrospinning polymer jets.

[1]  Hsueh-Chia Chang,et al.  Bacteria capture, concentration and detection by alternating current dielectrophoresis and self‐assembly of dispersed single‐wall carbon nanotubes , 2006, Electrophoresis.

[2]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[3]  Donald Rivin,et al.  Transport properties of porous membranes based on electrospun nanofibers , 2001 .

[4]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[5]  S. Sinnott,et al.  Carbon Nanotubes: Synthesis, Properties, and Applications , 2001 .

[6]  Benedict,et al.  Static polarizabilities of single-wall carbon nanotubes. , 1995, Physical review. B, Condensed matter.

[7]  Hsueh-Chia Chang,et al.  Iterated stretching of viscoelastic jets , 1999 .

[8]  R. A. McGill,et al.  Deposition Of Nanotubes and Nanotube Composites Using Matrix-Assisted Pulsed Laser Evaporation , 2000 .

[9]  Haihui Ye,et al.  Electrospinning of Continuous Carbon Nanotube‐Filled Nanofiber Yarns , 2003 .

[10]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[11]  H. Wagner,et al.  Buckling and Collapse of Embedded Carbon Nanotubes , 1998 .

[12]  Andreas Greiner,et al.  Nanostructured Fibers via Electrospinning , 2001 .

[13]  P. Bernier,et al.  Interactions in Carbon Nanotubes and Polymer/Nanotubes Composites as Evidenced by Raman Spectroscopy (Invited) , 2001 .

[14]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[15]  Andreas Greiner,et al.  Compound Core–Shell Polymer Nanofibers by Co‐Electrospinning , 2003 .

[16]  Otto Zhou,et al.  Deformation of carbon nanotubes in nanotube–polymer composites , 1999 .

[17]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[18]  Jean-Christophe P. Gabriel,et al.  Flexible Nanotube Electronics , 2003 .

[19]  Burak Erman,et al.  Electrospinning of polyurethane fibers , 2002 .

[20]  A. Rinzler,et al.  Self-assembly of tubular fullerenes , 1995 .

[21]  Michael P. Brenner,et al.  Electrospinning and electrically forced jets. II. Applications , 2001 .

[22]  John Zeleny,et al.  The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces , 1914 .

[23]  E. Grulke,et al.  Orientation of carbon nanotubes in a sheared polymer melt , 2003 .

[24]  Ya‐Ping Sun,et al.  Space durable polymer/carbon nanotube films for electrostatic charge mitigation ☆ , 2004 .

[25]  M. Cloupeau,et al.  Electrostatic spraying of liquids: Main functioning modes , 1990 .

[26]  U. Sundararaj,et al.  Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .

[27]  J. M. Grace,et al.  A review of liquid atomization by electrical means , 1994 .

[28]  James J. Feng The stretching of an electrified non-Newtonian jet: A model for electrospinning , 2002 .

[29]  James K. Hirvonen,et al.  Controlled deposition of electrospun poly(ethylene oxide) fibers , 2001 .

[30]  M. Cloupeau,et al.  ELECTROHYDRODYNAMIC SPRAYING FUNCTIONING MODES - A CRITICAL-REVIEW , 1994 .

[31]  C. H. Wang,et al.  Polarization dependence of intraband absorption in self-organized quantum dots , 1998 .

[32]  Geoffrey M. Spinks,et al.  Carbon nanotube and polyaniline composite actuators , 2003 .

[33]  Darrell H. Reneker,et al.  A model of steady state jet in the electrospinning process , 2000 .

[34]  Zachary Gagnon,et al.  AC electrospray biomaterials synthesis. , 2005, Biomaterials.

[35]  R. L. Shambaugh,et al.  Polypropylene fibers reinforced with carbon nanotubes , 2002 .

[36]  Darrell H. Reneker,et al.  Electrospinning process and applications of electrospun fibers , 1995 .

[37]  R. Smalley,et al.  Neat macroscopic membranes of aligned carbon nanotubes , 2003 .

[38]  W. N. Song,et al.  A phenomenological viscosity model for polymeric fluid , 1994 .

[39]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[40]  D. Reneker,et al.  Polybenzimidazole nanofiber produced by electrospinning , 1999 .

[41]  M. Márquez,et al.  Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets , 2002, Science.

[42]  Mark Voorneveld,et al.  Preparation , 2018, Games Econ. Behav..

[43]  Andreas Greiner,et al.  Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics , 2005 .

[44]  David Y. H. Pui,et al.  Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range , 1995 .

[45]  T. Chou,et al.  Carbon nanotube/carbon fiber hybrid multiscale composites , 2002 .

[46]  David G Simpson,et al.  Electrospinning of collagen nanofibers. , 2002, Biomacromolecules.

[47]  Mohan Srinivasarao,et al.  Fibers from polypropylene/nano carbon fiber composites , 2002 .

[48]  Leslie Y Yeo,et al.  A new ac electrospray mechanism by Maxwell-Wagner polarization and capillary resonance. , 2004, Physical review letters.

[49]  M. Dresselhaus,et al.  Synthesis, Extraction, and Purification of Fullerenes , 1996 .

[50]  K. Schulte,et al.  Imaging of conductive filler networks in heterogeneous materials by scanning Kelvin microscopy , 2001 .

[51]  R. Smalley,et al.  Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping , 2001 .

[52]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[53]  D. J. Brunner,et al.  ELECTROHYDRODYNAMIC ATOMIZATION IN THE CONE–JET MODE PHYSICAL MODELING OF THE LIQUID CONE AND JET , 1997 .

[54]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[55]  C Durkan,et al.  Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly , 2001, Science.

[56]  R. Langer,et al.  Biodegradable polymers as drug delivery systems , 1990 .

[57]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[58]  Lou,et al.  Fullerene nanotubes in electric fields. , 1995, Physical review. B, Condensed matter.

[59]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[60]  Hui-Ming Cheng,et al.  Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes , 2000 .

[61]  Darrell H. Reneker,et al.  Bending instability in electrospinning of nanofibers , 2001 .

[62]  Takashi Yanagisawa,et al.  Effect of ball milling on morphology of cup-stacked carbon nanotubes , 2002 .

[63]  Younan Xia,et al.  Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning , 2004 .

[64]  E. Kymakis,et al.  Optical properties of polymer-nanotube composites , 2004 .

[65]  T. Uchida,et al.  Carbon nanotube core–polymer shell nanofibers , 2005 .

[66]  V. M. Castaño,et al.  Chemical functionalization of carbon nanotubes through an organosilane , 2002 .

[67]  A. T. Johnson,et al.  Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm , 2003 .

[68]  A. A. Gusev,et al.  Evaluation of the elastic constants of nanoparticles from atomistic simulations , 2002 .

[69]  Geoffrey Ingram Taylor,et al.  Disintegration of water drops in an electric field , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[70]  Seiji Akita,et al.  RAPID COMMUNICATION: Orientation and purification of carbon nanotubes using ac electrophoresis , 1998 .

[71]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[72]  Jong-sang Kim,et al.  Thermal Properties of Electrospun Polyesters , 2000 .

[73]  Peter Ping-yi Tsai,et al.  Different electrostatic methods for making electret filters , 2002 .

[74]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[75]  R. Smalley,et al.  Structural anisotropy of magnetically aligned single wall carbon nanotube films , 2000 .

[76]  Zhongping Huang,et al.  Electrochemical synthesis of polypyrrole/carbon nanotube nanoscale composites using well-aligned carbon nanotube arrays , 2001 .

[77]  D. Saville ELECTROHYDRODYNAMICS:The Taylor-Melcher Leaky Dielectric Model , 1997 .

[78]  L. Larrondo,et al.  Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties , 1981 .

[79]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[80]  Otto Zhou,et al.  Alignment of carbon nanotubes in a polymer matrix by mechanical stretching , 1998 .

[81]  A. Ramos,et al.  Conical points in liquid-liquid interfaces subjected to electric fields , 1994 .

[82]  H. Fong,et al.  Elastomeric Nanofibers of Styrene-Butadiene-Styrene Triblock Copolymer , 1999 .

[83]  Chang Seoul,et al.  Electrospinning of poly(vinylidene fluoride)/dimethylformamide solutions with carbon nanotubes , 2003 .

[84]  Bingqing Wei,et al.  Study on poly(methyl methacrylate)/carbon nanotube composites , 1999 .

[85]  I. Sokolov,et al.  Asymptotic radius of a slightly conducting liquid jet in an electric field , 1986 .

[86]  A. Lobkovsky,et al.  Singular Shape of a Fluid Drop in an Electric or Magnetic Field , 1994, cond-mat/9401061.

[87]  Kwangsok Kim,et al.  Structure and process relationship of electrospun bioabsorbable nanofiber membranes , 2002 .

[88]  Cato T Laurencin,et al.  Electrospun nanofibrous structure: a novel scaffold for tissue engineering. , 2002, Journal of biomedical materials research.

[89]  David C. Martin,et al.  Processing and microstructural characterization of porous biocompatible protein polymer thin films , 1999 .

[90]  Eric A. Grulke,et al.  MULTIWALLED CARBON NANOTUBE POLYMER COMPOSITES: SYNTHESIS AND CHARACTERIZATION OF THIN FILMS , 2002 .

[91]  Eyal Zussman,et al.  Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning , 2003 .

[92]  Vimal Singh,et al.  Perturbation methods , 1991 .

[93]  Sophia N. Yaliraki,et al.  Aggregation properties of carbon nanotubes at interfaces , 2002 .

[94]  Stephen Z. D. Cheng,et al.  Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. , 2004, Journal of the American Chemical Society.

[95]  G. Michler,et al.  Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning , 2005 .

[96]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[97]  Grupo de Mec On the theory of electrohydrodynamically driven capillary jets , 1997 .

[98]  C. Chree The Mathematical Theory of Electricity and Magnetism , 1908, Nature.

[99]  S. Banda Characterization of Aligned Carbon Nanotube/Polymer Composites , 2004 .

[100]  Y. Dzenis,et al.  Spinning Continuous Fibers for Nanotechnology , 2004, Science.

[101]  G. Tibbetts Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes , 1983 .

[102]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[103]  Jun Kameoka,et al.  Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning , 2003 .

[104]  M. Brenner,et al.  Electrospinning and electrically forced jets. I. Stability theory , 2001 .

[105]  Gary E. Wnek,et al.  Electrospinning of Nanofiber Fibrinogen Structures , 2003 .

[106]  Y. Gogotsi,et al.  Reinforcement and rupture behavior of carbon nanotubes–polymer nanofibers , 2004 .

[107]  Rodney Andrews,et al.  Fabrication of Carbon Multiwall Nanotube/Polymer Composites by Shear Mixing , 2002 .

[108]  Eyal Zussman,et al.  Electrostatic field-assisted alignment of electrospun nanofibres , 2001 .

[109]  Eyal Zussman,et al.  Upward needleless electrospinning of multiple nanofibers , 2004 .

[110]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[111]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .

[112]  P. Gibson,et al.  Electrospinning Technology: Direct Application of Tailorable Ultrathin Membranes , 1998 .

[113]  Zhengwei Pan,et al.  Tensile tests of ropes of very long aligned multiwall carbon nanotubes , 1999 .

[114]  Frank Ko,et al.  Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends , 2000 .

[115]  P. Joshi,et al.  Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites. , 2005, Analytical chemistry.

[116]  P. Baumgarten,et al.  Electrostatic spinning of acrylic microfibers , 1971 .

[117]  K. Watson,et al.  Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications , 2001 .

[118]  M. Steinhart,et al.  Curvature-Directed Crystallization of Poly(vinylidene difluoride) in Nanotube Walls , 2003 .

[119]  G. Wnek,et al.  Electrospinning of poly(ethylene-co-vinyl alcohol) fibers. , 2003, Biomaterials.

[120]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[121]  B. Tang,et al.  Preparation, Alignment, and Optical Properties of Soluble Poly(phenylacetylene)-Wrapped Carbon Nanotubes† , 1999 .

[122]  J. Deitzel,et al.  The effect of processing variables on the morphology of electrospun nanofibers and textiles , 2001 .

[123]  H. Fong,et al.  Electrospinning and the Formation of Nanofibers , 2001 .

[124]  David L. Carroll,et al.  A Composite from Poly(m‐phenylenevinylene‐co‐2,5‐dioctoxy‐p‐phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics , 1998 .