LINS: A Lidar-Inerital State Estimator for Robust and Fast Navigation

Robust and fast ego-motion estimation is a critical problem for autonomous robots. With high reliability and precision, 3D-lidar-based simultaneous localization and mapping (SLAM) has been widely used in the robotics community to solve this problem. However, the lidar alone is not enough to provide full autonomy to robot navigation in terms of robustness and operating scope, especially in feature-less scenes. In this paper, we present LINS: a lidar-inertial state estimator for robust and fast navigation. Our approach tightly couples the 3D lidar and the inertial measurement unit (IMU) by an iterative error-state Kalman filter (IESKF). To validate generalizability and long-time practicability, extensive experiments are performed in a variety of scenarios including the city, port, forest, and parking lot. The results indicate that LINS outperforms the lidar-only methods in terms of accuracy and it is faster than the state-of-the-art lidar-inertial fusion methods in nearly an order of magnitude.

[1]  Brendan Englot,et al.  LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2]  Sridha Sridharan,et al.  Elastic LiDAR Fusion: Dense Map-Centric Continuous-Time SLAM , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[4]  Roland Siegwart,et al.  Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback , 2017, Int. J. Robotics Res..

[5]  Wolfgang Hess,et al.  Real-time loop closure in 2D LIDAR SLAM , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Jianwei Zhang,et al.  Dynamic objects detection and tracking for a laser scanner and camera system , 2017, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[7]  Adam Herout,et al.  Collar Line Segments for fast odometry estimation from Velodyne point clouds , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Cyrill Stachniss,et al.  Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments , 2018, Robotics: Science and Systems.

[9]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[10]  Timothy D. Barfoot,et al.  State Estimation for Robotics , 2017 .

[11]  Miaomiao Cai,et al.  Mitigation of multipath effect in GNSS short baseline positioning by the multipath hemispherical map , 2016, Journal of Geodesy.

[12]  Michael Himmelsbach,et al.  Fast segmentation of 3D point clouds for ground vehicles , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[13]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[14]  Frank Dellaert,et al.  IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation , 2015, Robotics: Science and Systems.

[15]  Andrey Soloviev,et al.  Tight Coupling of Laser Scanner and Inertial Measurements for a Fully Autonomous Relative Navigation Solution , 2007 .

[16]  Daniel Cremers,et al.  Direct Sparse Visual-Inertial Odometry Using Dynamic Marginalization , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Javier Civera,et al.  1-Point RANSAC for extended Kalman filtering: Application to real-time structure from motion and visual odometry , 2010 .

[18]  Davide Scaramuzza,et al.  A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Tim D. Barfoot,et al.  Gaussian Process Gauss-Newton for 3D laser-based Visual Odometry , 2013, 2013 IEEE International Conference on Robotics and Automation.

[20]  Stergios I. Roumeliotis,et al.  A Quadratic-Complexity Observability-Constrained Unscented Kalman Filter for SLAM , 2013, IEEE Transactions on Robotics.

[21]  Gamini Dissanayake,et al.  Convergence and Consistency Analysis for Extended Kalman Filter Based SLAM , 2007, IEEE Transactions on Robotics.

[22]  Stergios I. Roumeliotis,et al.  Observability-based consistent EKF estimators for multi-robot cooperative localization , 2011, Auton. Robots.

[23]  Javier Civera,et al.  1‐Point RANSAC for extended Kalman filtering: Application to real‐time structure from motion and visual odometry , 2010, J. Field Robotics.

[24]  Guoquan Huang,et al.  Robocentric visual–inertial odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[25]  Anup Goyal,et al.  Extended Kalman Filter vs. Error State Kalman Filter for Aircraft Attitude Estimation , 2011 .

[26]  Hannes Sommer,et al.  A Primer on the Differential Calculus of 3D Orientations , 2016, ArXiv.

[27]  Ming Liu,et al.  Tightly Coupled 3D Lidar Inertial Odometry and Mapping , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[28]  Weikun Zhen,et al.  Robust localization and localizability estimation with a rotating laser scanner , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Anastasios I. Mourikis,et al.  Real-time motion tracking on a cellphone using inertial sensing and a rolling-shutter camera , 2013, 2013 IEEE International Conference on Robotics and Automation.

[30]  Roland Siegwart,et al.  A robust and modular multi-sensor fusion approach applied to MAV navigation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Hang Dong,et al.  Into Darkness: Visual Navigation Based on a Lidar-Intensity-Image Pipeline , 2013, ISRR.

[32]  Shaojie Shen,et al.  Aggressive quadrotor flight using dense visual-inertial fusion , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Dongbing Gu,et al.  A review of visual inertial odometry from filtering and optimisation perspectives , 2015, Adv. Robotics.

[34]  F. W. Cathey,et al.  The iterated Kalman filter update as a Gauss-Newton method , 1993, IEEE Trans. Autom. Control..

[35]  Li Wang,et al.  LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments , 2015, Sensors.

[36]  John J. Leonard,et al.  Towards consistent visual-inertial navigation , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Joel A. Hesch,et al.  A Laser-Aided Inertial Navigation System (L-INS) for human localization in unknown indoor environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[38]  Guoquan Huang,et al.  LIPS: LiDAR-Inertial 3D Plane SLAM , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[39]  Tim D. Barfoot,et al.  RANSAC for motion-distorted 3D visual sensors , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Roland Siegwart,et al.  Keyframe-based Visual-Inertial SLAM using Nonlinear Optimization , 2013, RSS 2013.

[41]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[42]  Roland Siegwart,et al.  A Review of Point Cloud Registration Algorithms for Mobile Robotics , 2015, Found. Trends Robotics.

[43]  Joan Solà,et al.  Quaternion kinematics for the error-state Kalman filter , 2015, ArXiv.

[44]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.