Parametric Modeling for Damped Sinusoids From Multiple Channels

The problem of parametric modeling for noisy damped sinusoidal signals from multiple channels is addressed. Utilizing the shift invariance property of the signal subspace, the number of distinct sinusoidal poles in the multiple channels is first determined. With the estimated number, the distinct frequencies and damping factors are then computed with the multi-channel weighted linear prediction method. The estimated sinusoidal poles are then matched to each channel according to the extreme value theory of distribution of random fields. Simulations are performed to show the performance advantages of the proposed multi-channel sinusoidal modeling methodology compared with existing methods.

[1]  Hyunwoo Nam,et al.  Independent Component Analysis of Ictal EEG in Medial Temporal Lobe Epilepsy , 2002, Epilepsia.

[2]  Søren Holdt Jensen,et al.  Joint DOA and fundamental frequency estimation methods based on 2-D filtering , 2010, 2010 18th European Signal Processing Conference.

[3]  Weize Sun,et al.  Accurate estimation of common sinusoidal parameters in multiple channels , 2013, Signal Process..

[4]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[5]  Boaz Porat,et al.  Digital Processing of Random Signals: Theory and Methods , 2008 .

[6]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Andreas Jakobsson,et al.  Sinusoidal Order Estimation Using Angles between Subspaces , 2009, EURASIP J. Adv. Signal Process..

[8]  Roland Badeau,et al.  A new perturbation analysis for signal enumeration in rotational invariance techniques , 2006, IEEE Transactions on Signal Processing.

[9]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[10]  S. Van Huffel,et al.  Detection of autoregulation in the brain of premature infants using a novel subspace-based technique , 2001, 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[11]  S. Vanhuffel,et al.  Algorithm for time-domain NMR data fitting based on total least squares , 1994 .

[12]  J. Miller Numerical Analysis , 1966, Nature.

[13]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[14]  Marc Moonen,et al.  Joint DOA and multi-pitch estimation based on subspace techniques , 2012, EURASIP J. Adv. Signal Process..

[15]  Sabine Van Huffel,et al.  A Shift Invariance-Based Order-Selection Technique for Exponential Data Modelling , 2007, IEEE Signal Processing Letters.

[16]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[17]  John K. Thomas,et al.  The probability of a subspace swap in the SVD , 1995, IEEE Trans. Signal Process..

[18]  Sudhakar M. Pandit,et al.  Variance of least squares estimators for a damped sinusoidal process , 1994, IEEE Trans. Signal Process..

[19]  Wim Van Paesschen,et al.  Modeling common dynamics in multichannel signals with applications to artifact and background removal in EEG recordings , 2005, IEEE Transactions on Biomedical Engineering.

[20]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[21]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[22]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[23]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[24]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[25]  Andreas Jakobsson,et al.  Multi-Pitch Estimation , 2009, Multi-Pitch Estimation.

[26]  Andreas Jakobsson,et al.  Spectral estimation of damped sinusoids in the case of irregularly sampled data , 2009, 2009 International Symposium on Signals, Circuits and Systems.

[27]  Sabine Van Huffel,et al.  Decimative subspace-based parameter estimation techniques , 2003, Signal Process..

[28]  R. Kass,et al.  Automatic correction of ocular artifacts in the EEG: a comparison of regression-based and component-based methods. , 2004, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[29]  Yingbo Hua,et al.  High-Resolution and Robust Signal Processing , 2003 .

[30]  R. R. Boorstyn,et al.  Multiple tone parameter estimation from discrete-time observations , 1976, The Bell System Technical Journal.

[31]  R. Adler On excursion sets, tube formulas and maxima of random fields , 2000 .

[32]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[33]  Søren Holdt Jensen,et al.  Nonlinear Least Squares Methods for Joint DOA and Pitch Estimation , 2013, IEEE Transactions on Audio, Speech, and Language Processing.

[34]  Sabine Van Huffel,et al.  Common pole estimation in multi-channel exponential data modeling , 2006, Signal Process..

[35]  Yngve Selén,et al.  Spectral analysis of multichannel MRS data. , 2005, Journal of magnetic resonance.

[36]  Yiu-Tong Chan,et al.  Spectral estimation via the high-order Yule-Walker equations , 1982 .

[37]  Frankie K. W. Chan,et al.  A generalized weighted linear predictor frequency estimation approach for a complex sinusoid , 2006, IEEE Transactions on Signal Processing.

[38]  David N. Swingler,et al.  Approximations to the Cramer-Rao lower bound for a single damped exponential signal , 1999, Signal Process..