Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts.

[1]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[2]  A. Lasia,et al.  Kinetics of hydrogen evolution on nickel electrodes , 1990 .

[3]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[4]  Jan Rossmeisl,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide , 2011 .

[5]  N. M. Markovic,et al.  New Electrocatalysts for Fuel Cells from Model Surfaces to Commercial Catalysts , 2000 .

[6]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[7]  S. Trasatti Physical electrochemistry of ceramic oxides , 2010 .

[8]  V. Stamenkovic,et al.  Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces , 2011, Science.

[9]  Hubert A. Gasteiger,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. , 2012 .

[10]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[11]  H. Gasteiger,et al.  Effect of temperature on surface processes at the Pt(111)-liquid interface: Hydrogen adsorption, oxide formation and CO oxidation , 1999 .

[12]  L. Burke,et al.  Mechanism of oxygen reactions at porous oxide electrodes. Part 1.—Oxygen evolution at RuO2 and RuxSn1–xO2 electrodes in alkaline solution under vigorous electrolysis conditions , 1987 .

[13]  Michael E. G. Lyons,et al.  A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base , 2010 .

[14]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co 2 + , 2008 .

[15]  N. Prout,et al.  Modern Chlor-Alkali Technology , 1989 .

[16]  Kwang‐Bum Kim,et al.  A Study on the Phase Transformation of Electrochemically Precipitated Nickel Hydroxides Using an Electrochemical Quartz Crystal Microbalance , 1998 .

[17]  B. V. Tilak,et al.  Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H , 2002 .

[18]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[19]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[20]  C. Campbell Bimetallic Surface Chemistry , 1990 .

[21]  S. Ardizzone,et al.  "Inner" and "outer" active surface of RuO2 electrodes , 1990 .

[22]  Frédéric Jaouen,et al.  Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells , 2009, Science.

[23]  K. Kinoshita,et al.  Electrochemical Oxygen Technology , 1992 .

[24]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[25]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[26]  J. Hoare,et al.  The electrochemistry of oxygen , 1968 .

[27]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[28]  A. Russell,et al.  X-ray absorption spectroscopy of low temperature fuel cell catalysts. , 2004, Chemical reviews.

[29]  Patricia A. Thiel,et al.  The interaction of water with solid surfaces: Fundamental aspects , 1987 .

[30]  J. Greeley,et al.  Unique activity of platinum adislands in the CO electrooxidation reaction. , 2008, Journal of the American Chemical Society.

[31]  Hubert A. Gasteiger,et al.  Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution , 1996 .

[32]  D. Thompsett,et al.  Unprecedented structural sensitivity toward average terrace width: Nafion adsorption at Pt{hkl} electrodes , 2011 .

[33]  J. Goodenough Electrodes of Conductive Metallic Oxides , 1982 .

[34]  N. Marković,et al.  Effects of Li+, K+, and Ba2+ Cations on the ORR at Model and High Surface Area Pt and Au Surfaces in Alkaline Solutions , 2011 .

[35]  J. Nørskov,et al.  Electrolysis of water on oxide surfaces , 2007 .

[36]  R. Durand,et al.  Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes , 1980 .

[37]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[38]  Thomas J. Schmidt,et al.  Temperature-Dependent Surface Electrochemistry on Pt Single Crystals in Alkaline Electrolyte: Part 1: CO Oxidation , 2001 .

[39]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[40]  M. Koper,et al.  Co-adsorption of O and H(2)O on nanostructured platinum surfaces: Does OH form at steps? , 2010, Angewandte Chemie.

[41]  D. Scherson,et al.  In Situ Co K‐Edge X‐Ray Absorption Fine Structure of Cobalt Hydroxide Film Electrodes in Alkaline Solutions , 2000 .

[42]  J. Bockris,et al.  The Electrocatalysis of Oxygen Evolution on Perovskites , 1984 .

[43]  A. Damjanović,et al.  Oxygen Evolution at Platinum Electrodes in Alkaline Solutions: I . Dependence on Solution pH and Oxide Film Thickness , 1986 .

[44]  A. Damjanović,et al.  Oxygen Evolution at Platinum Electrodes in Alkaline Solutions II . Mechanism of the Reaction , 1986 .

[45]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[46]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[47]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[48]  H. Gasteiger,et al.  Just a Dream—or Future Reality? , 2009, Science.

[49]  L. Birry,et al.  Studies of the Hydrogen Evolution Reaction on Raney Nickel—Molybdenum Electrodes , 2004 .

[50]  P. Ross,et al.  Surface science studies of model fuel cell electrocatalysts , 2002 .

[51]  Michael A. Henderson,et al.  The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited , 2002 .