The Singularity Set of Optimal Transportation Maps

[1]  Shing-Tung Yau,et al.  Ae-OT: a New Generative Model based on Extended Semi-discrete Optimal transport , 2020, ICLR.

[2]  X. Gu,et al.  Secondary Polytope and Secondary Power Diagram , 2019, Computational Mathematics and Mathematical Physics.

[3]  Shing-Tung Yau,et al.  Geometric Understanding of Deep Learning , 2018, ArXiv.

[4]  Shing-Tung Yau,et al.  A Geometric View of Optimal Transportation and Generative Model , 2017, Comput. Aided Geom. Des..

[5]  Ian J. Goodfellow,et al.  NIPS 2016 Tutorial: Generative Adversarial Networks , 2016, ArXiv.

[6]  Aaron C. Courville,et al.  Generative Adversarial Networks , 2014, 1406.2661.

[7]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[8]  Vishesh Jain,et al.  On discontinuity of planar optimal transport maps , 2013, 1312.2929.

[9]  S. Yau,et al.  Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations , 2013, 1302.5472.

[10]  A. Figalli,et al.  Partial $W^{2,p}$ regularity for optimal transport maps , 2016, 1606.05173.

[11]  J. D. Loera,et al.  Triangulations: Structures for Algorithms and Applications , 2010 .

[12]  A. Figalli Regularity Properties of Optimal Maps Between Nonconvex Domains in the Plane , 2010 .

[13]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[14]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[15]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[16]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[17]  X. Gu,et al.  Secondary Power Diagram, Dual of Secondary Polytope , 2019, Lecture Notes in Computational Science and Engineering.

[18]  M. Bauer,et al.  Triangulations , 1996, Discret. Math..