Entanglement Detection via Direct-Sum Majorization Uncertainty Relations

In this paper we investigate the relationship between direct-sum majorization formulation of uncertainty relations and entanglement, for the case of two observables. Our primary results are entanglement detection methods based on direct-sum majorization uncertainty relations. These detectors provide a set of sufficient conditions for detecting entanglement whose number grows linearly with the dimension of the state being detected.

[1]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[2]  H. P. Robertson The Uncertainty Principle , 1929 .

[3]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[4]  A. Rényi On Measures of Entropy and Information , 1961 .

[5]  I. Bialynicki-Birula,et al.  Uncertainty relations for information entropy in wave mechanics , 1975 .

[6]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[7]  D. Deutsch Uncertainty in Quantum Measurements , 1983 .

[8]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[9]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[10]  B. M. Fulk MATH , 1992 .

[11]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[12]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[13]  Ugo Vaccaro,et al.  Supermodularity and subadditivity properties of the entropy on the majorization lattice , 2002, IEEE Trans. Inf. Theory.

[14]  V. Giovannetti,et al.  Characterizing the entanglement of bipartite quantum systems , 2002, quant-ph/0210155.

[15]  Separability conditions from entropic uncertainty relations , 2003, quant-ph/0307171.

[16]  H. Hofmann,et al.  Violation of local uncertainty relations as a signature of entanglement , 2002, quant-ph/0212090.

[17]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[18]  O. Gühne Characterizing entanglement via uncertainty relations. , 2003, Physical review letters.

[19]  M. Lewenstein,et al.  Entropic uncertainty relations and entanglement , 2004, quant-ph/0403219.

[20]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[21]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[22]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[23]  J. Boileau,et al.  Conjectured strong complementary information tradeoff. , 2008, Physical review letters.

[24]  R. Renner,et al.  The uncertainty principle in the presence of quantum memory , 2009, 0909.0950.

[25]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[26]  Marshall,et al.  [Springer Series in Statistics] Inequalities: Theory of Majorization and Its Applications || Matrix Theory , 2011 .

[27]  M. Partovi Majorization formulation of uncertainty in quantum mechanics , 2010, 1012.3481.

[28]  M. Partovi Entanglement detection using majorization uncertainty bounds , 2012, 1204.1289.

[29]  Patrick J. Coles,et al.  Uncertainty relations from simple entropic properties. , 2011, Physical review letters.

[30]  Lukasz Rudnicki,et al.  Majorization entropic uncertainty relations , 2013, ArXiv.

[31]  S. Friedland,et al.  Universal uncertainty relations. , 2013, Physical review letters.

[32]  K. Życzkowski,et al.  Strong majorization entropic uncertainty relations , 2014, 1402.0129.

[33]  P. Dey,et al.  Theory of Majorization And Its Applications , 2015 .

[34]  Yunlong Xiao,et al.  Strong entropic uncertainty relations for multiple measurements , 2016, 1604.02927.

[35]  M. Hayashi Quantum Information Theory , 2017 .

[36]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[37]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[38]  P. Alam ‘W’ , 2021, Composites Engineering.