Transversality and Alternating Projections for Nonconvex Sets

We consider the method of alternating projections for finding a point in the intersection of two closed sets, possibly nonconvex. Assuming only the standard transversality condition (or a weaker version thereof), we prove local linear convergence. When the two sets are semi-algebraic and bounded, but not necessarily transversal, we nonetheless prove subsequence convergence.

[1]  J. Borwein,et al.  Techniques of variational analysis , 2005 .

[2]  A. D. Ioffe,et al.  An Invitation to Tame Optimization , 2008, SIAM J. Optim..

[3]  A. D. Ioffe A Sard theorem for tame set-valued mappings , 2007 .

[4]  Alexander Y. Kruger,et al.  Quantitative Characterizations of Regularity Properties of Collections of Sets , 2013, J. Optim. Theory Appl..

[5]  M. Coste AN INTRODUCTION TO SEMIALGEBRAIC GEOMETRY , 2002 .

[6]  A. Ioffe,et al.  Metric Regularity. Theory and Applications - a survey , 2015, 1505.07920.

[7]  F. Andersson,et al.  Alternating Projections on Nontangential Manifolds , 2013 .

[8]  Heinz H. Bauschke,et al.  Restricted Normal Cones and the Method of Alternating Projections: Applications , 2012, 1205.0318.

[9]  Adrian S. Lewis,et al.  Clarke Subgradients of Stratifiable Functions , 2006, SIAM J. Optim..

[10]  K. Kurdyka On gradients of functions definable in o-minimal structures , 1998 .

[11]  Aude Rondepierre,et al.  On Local Convergence of the Method of Alternating Projections , 2013, Foundations of Computational Mathematics.

[12]  Michael E. Taylor,et al.  The Analysis of Linear Partial Differential Operators, Vols I & II. , 1985 .

[13]  Adrian S. Lewis,et al.  Alternating Projections on Manifolds , 2008, Math. Oper. Res..

[14]  D. Drusvyatskiy SLOPE AND GEOMETRY IN VARIATIONAL MATHEMATICS , 2013 .

[15]  A. Ioffe Critical values of set-valued maps with stratifiable graphs. Extensions of Sard and Smale-Sard theorems , 2008 .

[16]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[17]  Heinz H. Bauschke,et al.  Restricted Normal Cones and the Method of Alternating Projections: Theory , 2012 .

[18]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[19]  D. Russell Luke,et al.  Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems , 2012, SIAM J. Optim..

[20]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[21]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[22]  M. Coste AN INTRODUCTION TO O-MINIMAL GEOMETRY , 2002 .

[23]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[24]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[25]  Dmitriy Drusvyatskiy,et al.  Curves of Descent , 2012, SIAM J. Control. Optim..

[26]  Alexander Y. Kruger,et al.  Regularity of collections of sets and convergence of inexact alternating projections , 2015, 1501.04191.

[27]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[28]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[29]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[30]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[31]  Александр Давидович Иоффе,et al.  Метрическая регулярность и субдифференциальное исчисление@@@Metric regularity and subdifferential calculus , 2000 .

[32]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[33]  Adrian S. Lewis,et al.  Local Linear Convergence for Alternating and Averaged Nonconvex Projections , 2009, Found. Comput. Math..