Influence of Progressive Central Hypovolemia on Hölder Exponent Distributions of Cardiac Interbeat Intervals

The purpose of the study was to determine the dependency of the statistical properties of the R to R interval (RRI) time series on progressive central hypovolemia with lower body negative pressure. Two data-processing techniques based on wavelet transforms were used to determine the change in the nonstationary nature of the RRI time series with changing negative pressure. The results suggest that autonomic neural mechanism driving cardiac interbeat intervals during central hypovolemia go through various levels of multifractality, as determined by Hölder exponent distributions.

[1]  Bruce J. West,et al.  Fractal physiology for physicists: Lévy statistics , 1994 .

[2]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[3]  Z. Struzik Determining Local Singularity Strengths and their Spectra with the Wavelet Transform , 2000 .

[4]  Nigel Gough,et al.  Fractals, chaos, and fetal heart rate , 1992, The Lancet.

[5]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[6]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[7]  Zbigniew R. Struzik Removing divergences in the negative moments of the multi-fractal partition function with the wavelet transformation , 1998 .

[8]  Bruce J. West,et al.  Fractal fluctuations in cardiac time series. , 1999, Physica A.

[9]  R. Cohen,et al.  Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. , 1981, Science.

[10]  Alberto Malliani,et al.  The Pattern of Sympathovagal Balance Explored in the Frequency Domain. , 1999, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[11]  R. Badii,et al.  Complexity: Hierarchical Structures and Scaling in Physics , 1997 .

[12]  Jeffrey M. Hausdorff,et al.  Long-range anticorrelations and non-Gaussian behavior of the heartbeat. , 1993, Physical review letters.

[13]  Bruce J. West,et al.  Fractal physiology , 1994, IEEE Engineering in Medicine and Biology Magazine.

[14]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Bruce J. West,et al.  Hölder exponent spectra for human gait , 2002, cond-mat/0208028.

[16]  Bruce J. West,et al.  Nonlinear dynamical model of human gait. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  older exponent spectra for human gait , 2002 .

[18]  D. Eckberg,et al.  Important influence of respiration on human R-R interval power spectra is largely ignored. , 1993, Journal of applied physiology.

[19]  Bruce J West,et al.  Physiology, Promiscuity, and Prophecy at the Millennium: A Tale of Tails , 1999 .

[20]  V A Convertino,et al.  Lower body negative pressure as a tool for research in aerospace physiology and military medicine. , 2001, Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology.

[21]  W. Kilmer A Friendly Guide To Wavelets , 1998, Proceedings of the IEEE.

[22]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[23]  S. Mallat A wavelet tour of signal processing , 1998 .

[24]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[25]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  A. Walden,et al.  Wavelet Methods for Time Series Analysis , 2000 .

[27]  Bruce J. West,et al.  FRACTAL PHYSIOLOGY AND CHAOS IN MEDICINE , 1990 .

[28]  Bruce J. West,et al.  Multifractality of cerebral blood flow , 2003 .

[29]  Bruce J. West,et al.  Chaos and fractals in human physiology. , 1990, Scientific American.