Probe based multimodal and multi frequency methods for material characterization at nanoscale

University of Minnesota Ph.D. dissertation. February 2014. Major: Electrical Engineering. Advisor: Prof. Murti V. Salapaka. 1 computer file (PDF); ix, 95 pages.

[1]  J. Rothstein,et al.  Spectrin mutations cause spinocerebellar ataxia type 5 , 2006, Nature Genetics.

[2]  H. Hölscher,et al.  Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis , 2006 .

[3]  B. Mickey,et al.  Rigidity of microtubules is increased by stabilizing agents , 1995, The Journal of cell biology.

[4]  R. Proksch,et al.  Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM , 2011, Nanotechnology.

[5]  Murti V. Salapaka,et al.  A Review of the Systems Approach to the Analysis of Dynamic-Mode Atomic Force Microscopy , 2007, IEEE Transactions on Control Systems Technology.

[6]  L. Ranum,et al.  Spectrin mutations that cause spinocerebellar ataxia type 5 impair axonal transport and induce neurodegeneration in Drosophila , 2010, The Journal of cell biology.

[7]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[8]  R. Stark Dynamics of repulsive dual-frequency atomic force microscopy , 2009 .

[9]  Murti V. Salapaka,et al.  Thermally driven non-contact atomic force microscopy , 2005 .

[10]  G. Haugstad,et al.  Digital Pulsed Force Mode AFM and Confocal Raman Microscopy in Drug-Eluting Coatings Research , 2011 .

[11]  Xin Xu,et al.  Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic atomic force microscopy. , 2009, Physical review letters.

[12]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[13]  Murti V. Salapaka,et al.  Harmonic analysis based modeling of tapping-mode AFM , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[14]  L. Nony,et al.  Nonlinear dynamical properties of an oscillating tip–cantilever system in the tapping mode , 1999, physics/0510099.

[15]  L. Goldstein,et al.  Bead movement by single kinesin molecules studied with optical tweezers , 1990, Nature.

[16]  Sergei V. Kalinin,et al.  Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy , 2009, Nanotechnology.

[17]  W. Theurkauf,et al.  In Vivo Analysis of Drosophila bicoid mRNA Localization Reveals a Novel Microtubule-Dependent Axis Specification Pathway , 2001, Cell.

[18]  N. DeClaris,et al.  Asymptotic methods in the theory of non-linear oscillations , 1963 .

[19]  A. Raman,et al.  Origins of phase contrast in the atomic force microscope in liquids , 2009, Proceedings of the National Academy of Sciences.

[20]  Ricardo Garcia,et al.  Unifying theory of tapping-mode atomic-force microscopy , 2002 .

[21]  E. McFarland,et al.  Multi-mode noise analysis of cantilevers for scanning probe microscopy , 1997 .

[22]  A. Willsky,et al.  A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems , 1976 .

[23]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Steven M Block,et al.  Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. , 2007, Biophysical journal.

[25]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[26]  Sergei V. Kalinin,et al.  Local bias-induced phase transitions , 2008 .

[27]  Murti V. Salapaka,et al.  Harmonic and power balance tools for tapping-mode atomic force microscope , 2001 .

[28]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .