A micromechanics-based variational phase-field model for fracture in geomaterials with brittle-tensile and compressive-ductile behavior

This paper presents a framework for modeling failure in quasi-brittle geomaterials under different loading conditions. A micromechanics-based model is proposed in which the field variables are linked to physical mechanisms at the microcrack level: damage is related to the growth of microcracks, while plasticity is related to the frictional sliding of closed microcracks. Consequently, the hardening/softening functions and parameters entering the free energy follow from the definition of a single degradation function and the elastic material properties. The evolution of opening microcracks in tension leads to brittle behavior and mode I fracture, while the evolution of closed microcracks under frictional sliding in compression/shear leads to ductile behavior and mode II fracture. Frictional sliding is endowed with a non-associative law, a crucial aspect of the model that considers the effect of dilation and allows for realistic material responses with non-vanishing frictional energy dissipation. Despite the non-associative law, a variationally consistent formulation is presented using notions of energy balance and stability, following the energetic formulation for rate-independent systems. The material response of the model is first described, followed by the numerical implementation procedure and several benchmark finite element simulations. The results highlight the ability of the model to describe tensile, shear, and mixed-mode fracture, as well as responses with brittle-to-ductile transition. A key result is that, by virtue of the micromechanical arguments, realistic failure modes can be captured, without resorting to the usual heuristic modifications considered in the phase-field literature. The numerical results are thoroughly discussed with reference to previous numerical studies, experimental evidence, and analytical fracture criteria.

[1]  Sepideh Alizadeh Sabet,et al.  Convergence in non‐associated plasticity and fracture propagation for standard, rate‐dependent, and Cosserat continua , 2020, International Journal for Numerical Methods in Engineering.

[2]  WaiChing Sun,et al.  A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics , 2018, Computer Methods in Applied Mechanics and Engineering.

[3]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[4]  Gianni Royer-Carfagni,et al.  Regularized variational theories of fracture: A unified approach , 2010 .

[5]  Qi-Zhi Zhu,et al.  A micromechanics-based elastoplastic damage model for quasi-brittle rocks , 2011 .

[6]  Xiaoping Zhou,et al.  Phase field model for simulating the fracture behaviors of some disc-type specimens , 2020 .

[7]  J. Shao,et al.  Analysis of localized cracking in quasi-brittle materials with a micro-mechanics based friction-damage approach , 2018, Journal of the Mechanics and Physics of Solids.

[8]  L. Laloui,et al.  Constitutive analysis of shale: a coupled damage plasticity approach , 2015 .

[9]  Giovanni Lancioni,et al.  The Variational Approach to Fracture Mechanics. A Practical Application to the French Panthéon in Paris , 2009 .

[10]  Rhj Ron Peerlings,et al.  Gradient‐enhanced damage modelling of concrete fracture , 1998 .

[11]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[12]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[13]  Rui Faria,et al.  An energy release rate-based plastic-damage model for concrete , 2006 .

[14]  Davide Bernardini,et al.  Analysis of localization phenomena in Shape Memory Alloys bars by a variational approach , 2015 .

[15]  R. Müller,et al.  On phase field modeling of ductile fracture , 2016 .

[16]  I. Vardoulakis,et al.  The thickness of shear bands in granular materials , 1987 .

[17]  J. Shao,et al.  Incorporation of tension-compression asymmetry into plastic damage phase-field modeling of quasi brittle geomaterials , 2020 .

[18]  Joseph F Labuz,et al.  SIMULATION OF FAILURE AROUND A CIRCULAR OPENING IN ROCK , 2002 .

[19]  Peter Wriggers,et al.  Bayesian inversion for unified ductile phase-field fracture , 2021, Computational Mechanics.

[20]  J. Shao,et al.  A micro-mechanics based plastic damage model for quasi-brittle materials under a large range of compressive stress , 2018 .

[21]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[22]  Olaf Kolditz,et al.  Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing , 2019, GEM - International Journal on Geomathematics.

[23]  Rodney Hill,et al.  A VARIATIONAL PRINCIPLE OF MAXIMUM PLASTIC WORK IN CLASSICAL PLASTICITY , 1948 .

[24]  J. Marigo,et al.  An overview of the modelling of fracture by gradient damage models , 2016 .

[25]  Tomáš Roubíček,et al.  Rate-Independent Systems: Theory and Application , 2015 .

[26]  Stefano Vidoli,et al.  Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: One-dimensional examples , 2017, International Journal of Mechanical Sciences.

[27]  Alexander Mielke,et al.  A Mathematical Framework for Generalized Standard Materials in the Rate-Independent Case , 2006 .

[28]  E. Bryant,et al.  Phase field modeling of frictional slip with slip weakening/strengthening under non-isothermal conditions , 2021 .

[29]  Jian-Fu Shao,et al.  Modeling of elastoplastic damage behavior of a claystone , 2003 .

[30]  Nucleation under multi-axial loading in variational phase-field models of brittle fracture , 2021, International Journal of Fracture.

[31]  Philip K. Kristensen,et al.  An assessment of phase field fracture: crack initiation and growth , 2021, Philosophical Transactions of the Royal Society A.

[32]  M. Ayatollahi,et al.  Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading , 2007 .

[33]  L. Lorenzis,et al.  Phase-field modeling of ductile fracture , 2015, Computational Mechanics.

[34]  Claudia Comi,et al.  Computational modelling of gradient‐enhanced damage in quasi‐brittle materials , 1999 .

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  J. Moreau On Unilateral Constraints, Friction and Plasticity , 2011 .

[37]  H. Waisman,et al.  Brittle-ductile failure transition in geomaterials modeled by a modified phase-field method with a varying damage-driving energy coefficient , 2021 .

[38]  Soo-Ho Chang,et al.  Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens , 2002 .

[39]  Ove Stephansson,et al.  Modification of the G-criterion for crack propagation subjected to compression , 1994 .

[40]  G. Lancioni,et al.  Modeling micro-cracking and failure in short fiber-reinforced composites , 2020 .

[41]  J. Marigo,et al.  Gradient Damage Models and Their Use to Approximate Brittle Fracture , 2011 .

[42]  G. Royer-Carfagni,et al.  Phase-field slip-line theory of plasticity , 2016 .

[43]  Stefano Vidoli,et al.  A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case , 2017 .

[44]  Tao Meng,et al.  Study of mixed mode fracture toughness and fracture trajectories in gypsum interlayers in corrosive environment , 2018, Royal Society Open Science.

[45]  Jeremy Bleyer,et al.  Phase-field modeling of anisotropic brittle fracture including several damage mechanisms , 2018, Computer Methods in Applied Mechanics and Engineering.

[46]  Pierre-Yves Hicher,et al.  A constitutive model coupling elastoplasticity and damage for cohesive‐frictional materials , 1998 .

[47]  Emilio Mart'inez-Paneda,et al.  A simple and robust Abaqus implementation of the phase field fracture method , 2021, ArXiv.

[48]  Vinh Phu Nguyen,et al.  Phase-field modeling of fracture , 2019 .

[49]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[50]  Daniel Kienle,et al.  A variational minimization formulation for hydraulically induced fracturing in elastic-plastic solids , 2021, International Journal of Fracture.

[51]  Ronaldo I. Borja,et al.  Computational modeling of deformation bands in granular media. I. Geological and mathematical framework , 2004 .

[52]  C. Jia,et al.  Experimental Investigation and Micromechanical Modeling of Elastoplastic Damage Behavior of Sandstone , 2020, Materials.

[53]  Felix K. Schwab,et al.  Multiphase-field modelling of crack propagation in geological materials and porous media with Drucker-Prager plasticity , 2020, Computational Geosciences.

[54]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[55]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .

[56]  M. Pavier,et al.  The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading , 2001 .

[57]  C. Miehe,et al.  Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[58]  Stefano Vidoli,et al.  Comparison of Phase-Field Models of Fracture Coupled with Plasticity , 2018 .

[59]  M. Ortiz,et al.  A finite element method for localized failure analysis , 1987 .

[60]  Richard A. Regueiro,et al.  Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity , 2001 .

[61]  Jerzy Pamin,et al.  Gradient plasticity in numerical simulation of concrete cracking , 1996 .

[62]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[63]  Christian Miehe,et al.  A multi-field incremental variational framework for gradient-extended standard dissipative solids , 2011 .

[64]  Daniel Kienle,et al.  A finite-strain phase-field approach to ductile failure of frictional materials , 2019, International Journal of Solids and Structures.

[65]  C. Samaniego,et al.  A phase-field model for ductile fracture with shear bands: A parallel implementation , 2021 .

[66]  Ioannis Vardoulakis,et al.  Shear band inclination and shear modulus of sand in biaxial tests , 1980 .

[67]  Jerzy Pamin,et al.  Two gradient plasticity theories discretized with the element-free Galerkin method , 2003 .

[68]  Esteban Samaniego,et al.  AES for multiscale localization modeling in granular media , 2011 .

[69]  Kourosh Shahriar,et al.  Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks , 2014 .

[70]  J. Shao,et al.  A refined micromechanical damage–friction model with strength prediction for rock-like materials under compression , 2015 .

[71]  R. Kajewski,et al.  Shear band formation in Gosford sandstone , 1991 .

[72]  Fan Fei,et al.  A phase-field model of frictional shear fracture in geologic materials , 2020 .

[73]  Jian-Fu Shao,et al.  An isotropic unilateral damage model coupled with frictional sliding for quasi-brittle materials , 2013 .

[74]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[75]  Gilles A. Francfort,et al.  Recovering convexity in non-associated plasticity , 2017 .

[76]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[77]  B. Bourdin,et al.  Revisiting nucleation in the phase-field approach to brittle fracture , 2020 .

[78]  E. Oñate,et al.  A plastic-damage model for concrete , 1989 .

[79]  Michael Kaliske,et al.  A gradient enhanced plasticity–damage microplane model for concrete , 2018 .

[80]  Ralf Müller,et al.  On degradation functions in phase field fracture models , 2015 .

[81]  J. R. F. Arthur,et al.  Plastic deformation and failure in granular media , 1977 .

[82]  Richard A. Regueiro,et al.  Embedded strong discontinuity finite elements for fractured geomaterials with variable friction , 2007 .

[84]  Frederick M. Chester,et al.  Hybrid fracture and the transition from extension fracture to shear fracture , 2004, Nature.

[85]  T. Belytschko,et al.  A finite element with embedded localization zones , 1988 .

[86]  주진현 Plasticity : Modeling & Computation , 2014 .

[87]  J. Marigo,et al.  Gradient damage models coupled with plasticity: Variational formulation and main properties , 2015 .

[88]  A. Huespe,et al.  Continuum approach to the numerical simulation of material failure in concrete , 2004 .

[89]  J. Labuz,et al.  Shear fracture in sandstone under plane-strain compression , 2006 .

[90]  Qi-Zhi Zhu,et al.  Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: Role of the homogenization scheme , 2008 .

[91]  Joseph F Labuz,et al.  Plane-strain compression of rock-like materials , 1996 .

[92]  WaiChing Sun,et al.  Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow , 2018 .

[93]  M.R.M. Aliha,et al.  Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading , 2010 .

[94]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[95]  Vinh Phu Nguyen,et al.  A length scale insensitive phase-field damage model for brittle fracture , 2018, Journal of the Mechanics and Physics of Solids.

[96]  Jean-Jacques Marigo,et al.  Un modèle de matériau microfissuré pour les bétons et les roches , 1986 .

[97]  P. Laborde Analysis of the strain-stress relation in plasticity with non-associated laws , 1987 .

[98]  Kaspar Willam,et al.  A coupled elastoplastic damage model for geomaterials , 2004 .

[99]  F. Oka,et al.  A strain localization analysis using a viscoplastic softening model for clay , 1995 .

[100]  Jean-Jacques Marigo,et al.  Crack nucleation in variational phase-field models of brittle fracture , 2018 .

[101]  Jun Peng,et al.  A cohesion loss model for determining residual strength of intact rocks , 2019, International Journal of Rock Mechanics and Mining Sciences.

[102]  Miguel Cervera,et al.  A RATE-DEPENDENT ISOTROPIC DAMAGE MODEL FOR THE SEISMIC ANALYSIS OF CONCRETE DAMS , 1996 .

[104]  C. Derek Martin,et al.  Cohesion degradation and friction mobilization in brittle failure of rocks , 2018, International Journal of Rock Mechanics and Mining Sciences.

[105]  V. Hajiabdolmajid,et al.  Modelling brittle failure of rock , 2002 .

[106]  Sepideh Alizadeh Sabet,et al.  Structural softening, mesh dependence, and regularisation in non‐associated plastic flow , 2019, International Journal for Numerical and Analytical Methods in Geomechanics.

[107]  Martin Čermák,et al.  Simplified numerical realization of elastoplastic constitutive problems: PART I - criteria given by Haigh-Westergaard coordinates , 2015, ArXiv.

[108]  Miguel Cervera,et al.  A thermodynamically consistent plastic-damage framework for localized failure in quasi-brittle solids: Material model and strain localization analysis , 2016 .

[109]  R. Borst,et al.  Localisation in a Cosserat continuum under static and dynamic loading conditions , 1991 .

[110]  Geert Degrande,et al.  On the variational modeling of non-associative plasticity , 2020 .

[111]  Fadi Aldakheel,et al.  A microscale model for concrete failure in poro-elasto-plastic media , 2020, Theoretical and Applied Fracture Mechanics.

[112]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[113]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[114]  Cristóbal Samaniego,et al.  A variational approach to the phase field modeling of brittle and ductile fracture , 2018, International Journal of Mechanical Sciences.

[115]  Scott W. Sloan,et al.  A modification of the phase-field model for mixed mode crack propagation in rock-like materials , 2017 .

[116]  G. Lombaert,et al.  A dissipation‐based path‐following technique for the phase‐field approach to brittle and ductile fracture , 2021, International Journal for Numerical Methods in Engineering.

[117]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[118]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[119]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[120]  N. P. Dijk,et al.  Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy , 2020 .

[121]  M. Jirásek,et al.  Plastic model with non‐local damage applied to concrete , 2006 .

[122]  R. Borst,et al.  Non-Associated Plasticity for Soils, Concrete and Rock , 1984 .

[123]  Luc Dormieux,et al.  Micromechanical Analysis of Anisotropic Damage in Brittle Materials , 2002 .

[124]  J. Shao,et al.  Analytical and numerical analysis of frictional damage in quasi brittle materials , 2016 .

[125]  E. Salvati Residual stress as a fracture toughening mechanism: A Phase-Field study on a brittle material , 2021 .

[126]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[127]  Alan Needleman,et al.  Non-normality and bifurcation in plane strain tension and compression , 1979 .

[128]  J. Marigo,et al.  A micromechanical inspired model for the coupled to damage elasto-plastic behavior of geomaterials under compression , 2019, Mechanics & Industry.

[129]  Z. Bažant,et al.  Nonlocal Continuum Damage, Localization Instability and Convergence , 1988 .

[130]  M. Ayatollahi,et al.  On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials , 2008 .

[131]  Ronaldo I. Borja,et al.  Computational modeling of deformation bands in granular media. II. Numerical simulations , 2004 .

[132]  O. Dahlblom,et al.  Phase-field fracture modelling of crack nucleation and propagation in porous rock , 2020, International Journal of Fracture.

[133]  Roberto Alessi,et al.  Energetic formulation for rate-independent processes: remarks on discontinuous evolutions with a simple example , 2016 .

[134]  Milan Jirásek,et al.  Non-local damage mechanics with application to concrete , 2004 .

[135]  J. Oliver,et al.  Strong discontinuities and continuum plasticity models: the strong discontinuity approach , 1999 .

[136]  J. Shao,et al.  A micromechanics-based thermodynamic formulation of isotropic damage with unilateral and friction effects , 2011 .

[137]  Christian Miehe,et al.  Phase Field Modeling of Fracture in Multi-Physics Problems. Part II. Coupled Brittle-to-Ductile Failure Criteria and Crack Propagation in Thermo-Elastic-Plastic Solids , 2015 .

[138]  Geert Degrande,et al.  Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation , 2019, ArXiv.

[139]  Elvio A. Pilotta,et al.  An energetic formulation of a gradient damage model for concrete and its numerical implementation , 2018, International Journal of Solids and Structures.

[140]  Milan Jirásek,et al.  Comparative study on finite elements with embedded discontinuities , 2000 .

[141]  R. Borst,et al.  On viscoplastic regularisation of strain‐softening rocks and soils , 2020, International Journal for Numerical and Analytical Methods in Geomechanics.