A Methodology for Learning Optimal Dialog Strategies

In this paper, we present a technique for learning new dialog strategies by using a statistical dialog manager that is trained from a dialog corpus. A dialog simulation technique has been developed to acquire data required to train the dialog model and then explore new dialog strategies. A set of measures has also been defined to evaluate the dialog strategy that is automatically learned. We have applied this technique to explore the space of possible dialog strategies for a dialog system that collects monitored data from patients suffering from diabetes.