A Consumer's Guide to LOGIST and BILOG

Since its release in 1976, Wingersky, Barton, and Lord's (1982) LOGIST has been the most widely used computer program for estimating the parameters of the three-parameter logistic item response model. An al ternative program, Mislevy and Bock's (1983) BILOG, has recently become available. This paper compares the approaches taken by the two programs and offers some guidelines for choosing between the two pro grams for particular applications. Index terms: Bayesian estimation, BILOG, IRT estimation procedures, LOGIST, marginal maximum likelihood, maximum like lihood, three-parameter logistic model estimation pro cedures.

[1]  R. Darrell Bock,et al.  Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .

[2]  Frederic M. Lord THE RELATION OF TEST SCORE TO THE TRAIT UNDERLYING THE TEST , 1952 .

[3]  D. Bartholomew The sensitivity of latent trait analysis to choice of prior distribution , 1988 .

[4]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[5]  Frederic M. Lord,et al.  Maximum likelihood estimation of item response parameters when some responses are omitted , 1983 .

[6]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[7]  Benjamin D. Wright,et al.  Solving measurement problems with the Rasch model. , 1977 .

[8]  Robert J. Mislevy,et al.  Recent Developments in the Factor Analysis of Categorical Variables. Research Report. , 1985 .

[9]  Martha L. Stocking,et al.  Developing a Common Metric in Item Response Theory , 1982 .

[10]  Wendy M. Yen,et al.  A comparison of the efficiency and accuracy of BILOG and LOGIST , 1987 .

[11]  A. L. V. D. Wollenberg The Rasch model and time-limit tests: an application and some theoretical contributions , 1979 .

[12]  R. D. Bock,et al.  Adaptive EAP Estimation of Ability in a Microcomputer Environment , 1982 .

[13]  C. Lewis DIFFICULTIES WITH BAYESIAN INFERENCE FOR RANDOM EFFECTS , 1989 .

[14]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[15]  G. Rasch,et al.  A MATHEMATICAL THEORY OF OBJECTIVITY AND ITS CONSEQUENCES FOR MODEL CONSTRUCTION , 1968 .

[16]  Roderick P. McDonald,et al.  The dimensionality of tests and items , 1981 .

[17]  E. B. Andersen,et al.  Estimating the parameters of the latent population distribution , 1977 .

[18]  Robert J. Mislevy,et al.  Bayes modal estimation in item response models , 1986 .

[19]  Jan-Eric Gustafsson,et al.  Testing and obtaining fit of data to the Rasch model , 1980 .

[20]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[21]  H. Swaminathan,et al.  Estimation of Parameters in the Three-Parameter Latent Trait Model , 1983 .

[22]  Shelby J. Haberman,et al.  Maximum Likelihood Estimates in Exponential Response Models , 1977 .

[23]  Ledyard R Tucker,et al.  The distribution of chance congruence coefficients from simulated data , 1975 .

[24]  Frederic M. Lord,et al.  Estimation of latent ability and item parameters when there are omitted responses , 1974 .

[25]  Lalitha Sanathanan,et al.  The Logistic Model and Estimation of Latent Structure , 1978 .

[26]  Neal M. Kingston,et al.  The Analysis of Item-Ability Regressions: An Exploratory IRT Model Fit Tool , 1985 .

[27]  W. M. Yen Using Simulation Results to Choose a Latent Trait Model , 1981 .

[28]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[29]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[30]  Janice A. Gifford,et al.  Bayesian estimation in the three-parameter logistic model , 1986 .

[31]  Robert J. Mislevy,et al.  INFERRING EXAMINEE ABILITY WHEN SOME ITEM RESPONSES ARE MISSING , 1988 .

[32]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[33]  F. Lord,et al.  An Investigation of Methods for Reducing Sampling Error in Certain IRT Procedures , 1983 .

[34]  H. B. Heywood,et al.  On finite sequences of real numbers , 1931 .

[35]  R. Mislevy Estimating latent distributions , 1984 .

[36]  James O. Ramsay,et al.  Solving implicit equations in psychometric data analysis , 1975 .

[37]  Erling B. Andersen,et al.  Conditional Inference and Models for Measuring , 1974 .

[38]  F. Lord A theory of test scores. , 1952 .

[39]  Robert K. Tsutakawa,et al.  Approximation for Bayesian Ability Estimation , 1988 .

[40]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[41]  E. Muraki,et al.  Full-Information Item Factor Analysis , 1988 .