Computational inverse design for cascaded systems of metasurface optics.

Metasurfaces are an emerging technology that may supplant many of the conventional optics found in imaging devices, displays, and precision scientific instruments. Here, we develop a method for designing optical systems composed of multiple unique metasurfaces aligned in sequence and separated by distances much larger than the design wavelengths. Our approach is based on computational inverse design, also known as the adjoint-gradient method. This technique enables thousands or millions of independent design variables (e.g., the shapes of individual meta-atoms) to be optimized in parallel, with little or no intervention required by the user. The assumptions underlying our method are as follows: we use the local periodic approximation to determine the phase-response of a given meta-atom, we use the scalar wave approximation to propagate light fields between metasurface layers, and we do not consider multiple reflections between metasurface layers (analogous to a sequential-optics ray-tracer). To demonstrate the broad applicability of our method, we use it to design an achromatic doublet metasurface lens, a spectrally-multiplexed holographic element, and an ultra-compact optical neural network for classifying handwritten digits.

[1]  Federico Capasso,et al.  Broadband high-efficiency dielectric metasurfaces for the visible spectrum , 2016, Proceedings of the National Academy of Sciences.

[2]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .

[3]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[4]  F Callewaert,et al.  Inverse-Designed Broadband All-Dielectric Electromagnetic Metadevices , 2018, Scientific Reports.

[5]  N. Yu,et al.  Broadband achromatic dielectric metalenses , 2018, Light, science & applications.

[6]  Shanhui Fan,et al.  Adjoint Method and Inverse Design for Nonlinear Nanophotonic Devices , 2018, ACS Photonics.

[7]  Eli Yablonovitch,et al.  Adjoint shape optimization applied to electromagnetic design. , 2013, Optics express.

[8]  Jianji Yang,et al.  Topology-optimized metasurfaces: impact of initial geometric layout. , 2017, Optics letters.

[9]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[10]  F. Capasso,et al.  Nano-optic endoscope for high-resolution optical coherence tomography in vivo , 2018, Nature photonics.

[11]  Igal Brener,et al.  Polarization-Independent Silicon Metadevices for Efficient Optical Wavefront Control. , 2015, Nano letters.

[12]  Federico Capasso,et al.  A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures , 2018, Nature Communications.

[13]  Ian A. D. Williamson,et al.  Training of Photonic Neural Networks through In Situ Backpropagation , 2019 .

[14]  N. Gauger,et al.  Sensitivity analysis and optimization of sub-wavelength optical gratings using adjoints. , 2014, Optics express.

[15]  S. Bennett,et al.  Achromatic combinations of hologram optical elements. , 1976, Applied optics.

[16]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[17]  Q. Gong,et al.  Visible-Frequency Dielectric Metasurfaces for Multiwavelength Achromatic and Highly Dispersive Holograms. , 2016, Nano letters.

[18]  Alexander Jesacher,et al.  Colored point spread function engineering for parallel confocal microscopy. , 2016, Optics express.

[19]  Jesse Lu,et al.  Nanophotonic computational design. , 2013, Optics express.

[20]  John R. Rogers,et al.  Some fundamental limitations of achromatic holographic systems , 1989 .

[21]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[22]  Seyedeh Mahsa Kamali,et al.  Controlling the sign of chromatic dispersion in diffractive optics , 2017, 1701.07178.

[23]  Alexander Y. Piggott,et al.  Fabrication-constrained nanophotonic inverse design , 2016, Scientific Reports.

[24]  Sjoerd Stallinga,et al.  Simultaneous measurement of emission color and 3D position of single molecules. , 2016, Optics express.

[25]  Marco Fiorentino,et al.  Sub-Wavelength Grating Lenses With a Twist , 2014, IEEE Photonics Technology Letters.

[26]  Federico Capasso,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, CLEO 2017.

[27]  Jianji Yang,et al.  High-efficiency, large-area, topology-optimized metasurfaces , 2019, Light: Science & Applications.

[28]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[29]  Arka Majumdar,et al.  Low contrast dielectric metasurface optics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[30]  Hongbin Wang,et al.  Comment on All-optical machine learning using diffractive deep neural networks , 2018, ArXiv.

[31]  Federico Capasso,et al.  Topology-Optimized Multilayered Metaoptics , 2017, 1706.06715.

[32]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.

[33]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[34]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[35]  David Sell,et al.  Periodic Dielectric Metasurfaces with High‐Efficiency, Multiwavelength Functionalities , 2017 .

[36]  Ethan Schonbrun,et al.  Reconfigurable imaging systems using elliptical nanowires. , 2011, Nano letters.

[37]  Marco Fiorentino,et al.  A multi-directional backlight for a wide-angle, glasses-free three-dimensional display , 2013, Nature.

[38]  Andrei Faraon,et al.  High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. , 2016, Optics express.

[39]  Vidya Ganapati,et al.  Light Trapping Textures Designed by Electromagnetic Optimization for Subwavelength Thick Solar Cells , 2013, IEEE Journal of Photovoltaics.

[40]  O. Miller Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design , 2013, 1308.0212.

[41]  Tomer Michaeli,et al.  Multicolor localization microscopy and point-spread-function engineering by deep learning. , 2019, Optics express.

[42]  Federico Capasso,et al.  Meta-Lens Doublet in the Visible Region. , 2017, Nano letters.

[43]  Patrick Llull,et al.  Achromatic Varifocal Metalens for the Visible Spectrum , 2019, Frontiers in Optics + Laser Science APS/DLS.

[44]  Wei Ting Chen,et al.  Polarization-Insensitive Metalenses at Visible Wavelengths. , 2016, Nano letters.

[45]  Joseph W. Goodman,et al.  Diffractive doublets corrected at two wavelengths , 1991 .

[46]  Stefano Cabrini,et al.  Optical metasurfaces for high angle steering at visible wavelengths , 2017, Scientific Reports.

[47]  Arka Majumdar,et al.  Metasurface optics for full-color computational imaging , 2018, Science Advances.

[48]  Philippe Lalanne,et al.  Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff , 1999 .

[49]  Steven G. Johnson,et al.  Topology optimization of freeform large-area metasurfaces. , 2019, Optics express.

[50]  Gong Gu,et al.  Multilayer Noninteracting Dielectric Metasurfaces for Multiwavelength Metaoptics. , 2018, Nano letters.

[51]  Yue Jiang,et al.  All-optical neural network with nonlinear activation functions , 2019, Optica.

[52]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[53]  John W. Bandler,et al.  Feasible adjoint sensitivity technique for EM design optimization , 2002, IMS 2002.

[54]  Andrei Faraon,et al.  Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations , 2016, Nature Communications.

[55]  Tal Ellenbogen,et al.  Composite functional metasurfaces for multispectral achromatic optics , 2016, Nature Communications.

[56]  Dries Vercruysse,et al.  Fully-automated optimization of grating couplers. , 2017, Optics express.

[57]  Andrei Faraon,et al.  Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces , 2015, Nature Communications.

[58]  Jonathan A. Fan,et al.  Simulator-based training of generative neural networks for the inverse design of metasurfaces , 2019, Nanophotonics.

[59]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[60]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[61]  Anthony Grbic,et al.  Efficient light bending with isotropic metamaterial Huygens' surfaces. , 2014, Nano letters.

[62]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[63]  Steven G. Johnson,et al.  Inverse design of large-area metasurfaces. , 2018, Optics express.

[64]  Gordon Wetzstein,et al.  Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification , 2018, Scientific Reports.

[65]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[66]  Lucien E. Weiss,et al.  Multicolour localization microscopy by point-spread-function engineering , 2016, Nature Photonics.

[67]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[68]  Seyedeh Mahsa Kamali,et al.  Multiwavelength metasurfaces through spatial multiplexing , 2016, Scientific Reports.

[69]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[70]  Arka Majumdar,et al.  Inverse design of optical elements based on arrays of dielectric spheres. , 2018, Applied optics.

[71]  Igal Brener,et al.  Huygens' Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators. , 2017, Nano letters.

[72]  Alexander Y. Piggott,et al.  Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer , 2015, Nature Photonics.

[73]  Federico Capasso,et al.  Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. , 2017, Physical review letters.

[74]  Ole Sigmund,et al.  Topology optimization for nano‐photonics , 2011 .

[75]  Rajesh Menon,et al.  Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing , 2016, Scientific Reports.

[76]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[77]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[78]  Andrei Faraon,et al.  A review of dielectric optical metasurfaces for wavefront control , 2018, Nanophotonics.

[79]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[80]  C. H. Chu,et al.  Achromatic metalens array for full-colour light-field imaging , 2019, Nature Nanotechnology.

[81]  Steven G. Johnson,et al.  Notes on Adjoint Methods for 18.335 , 2012 .

[82]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[83]  J R Fienup,et al.  Phase-retrieval algorithms for a complicated optical system. , 1993, Applied optics.

[84]  David Sell,et al.  Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries. , 2017, Nano letters.

[85]  Mario Miscuglio,et al.  All-optical nonlinear activation function for photonic neural networks [Invited] , 2018, Optical Materials Express.

[86]  Sheng Liu,et al.  Optical Nonlinearities in All-Dielectric Metasurfaces , 2018, 2018 International Conference on Optical MEMS and Nanophotonics (OMN).

[87]  Federico Capasso,et al.  Single-Layer Metasurface with Controllable Multiwavelength Functions. , 2018, Nano letters.

[88]  C. Pfeiffer,et al.  Cascaded metasurfaces for complete phase and polarization control , 2013 .

[89]  Jacob Scheuer,et al.  Genetically optimized all-dielectric metasurfaces. , 2017, Optics express.

[90]  Federico Capasso,et al.  Broadband Achromatic Metasurface-Refractive Optics. , 2018, Nano letters.