Multi-level Monte Carlo finite element method for elliptic PDE's with stochastic coefficients

It is a well–known property of Monte Carlo methods that quadrupling the sample size halves the error. In the case of simulations of a stochastic partial differential equations, this implies that the total work is the sample size times the discretization costs of the equation. This leads to a convergence rate which is impractical for many simulations, namely in finance, physics and geosciences. With the Multi–level Monte Carlo method introduced herein, the overall work can be reduced to that of the discretization of the equation, which results in the same convergence rate as for the standard Monte Carlo method. The model problem is an elliptic equation with stochastic coefficients. Multi-level Monte Carlo errors and work estimates are given both for the mean of the solutions and for higher moments. Numerical examples complete the theoretical analysis.

[1]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[2]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[3]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[4]  P. Oswald,et al.  On additive Schwarz preconditioners for sparse grid discretizations , 1993 .

[5]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[6]  A. Barth,et al.  A finite element method for martingale-driven stochastic partial differential equations , 2010 .

[7]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[8]  A. Barth,et al.  Simulation of stochastic partial differential equations using finite element methods , 2012 .

[9]  R. L. Naff,et al.  High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 1. Methodology and flow results , 1998 .

[10]  C. Schwab,et al.  NUMERICAL SOLUTION OF PARABOLIC EQUATIONS IN HIGH DIMENSIONS , 2004 .

[11]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[12]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[13]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[14]  C. Schwab,et al.  Sparse high order FEM for elliptic sPDEs , 2009 .

[15]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[16]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[17]  S. Larsson,et al.  Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise , 2009 .

[18]  R. L. Naff,et al.  High‐resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media: 2. Transport results , 1998 .

[19]  Jürgen Potthoff,et al.  Fast simulation of Gaussian random fields , 2011, Monte Carlo Methods Appl..

[20]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[21]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[22]  Christoph Schwab,et al.  Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..

[23]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[24]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[25]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[26]  Stig Larsson,et al.  Finite Element Approximation of the Linear Stochastic Wave Equation with Additive Noise , 2010, SIAM J. Numer. Anal..

[27]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[28]  Christoph Schwab,et al.  Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.

[29]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..