Impact of historical soil management on the interaction of plant-growth-promoting bacteria with maize (Zea mays L.)

[1]  J. S. Ávila,et al.  Organic maize grown with Herbaspirillum seropedicae and Azospirillum brasilense associated with green manures , 2023 .

[2]  André O Souza,et al.  Chemical properties of Oxisol cultivated with corn in management systems of soil irrigated with swine production wastewater. , 2023, Anais da Academia Brasileira de Ciencias.

[3]  F. Olivares,et al.  Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance , 2023, Microorganisms.

[4]  A. K. Mishra,et al.  Plant Growth Promoting Rhizobacteria in Plant Health: A Perspective Study of the Underground Interaction , 2023, Plants.

[5]  Rajesh Kumar Gazara,et al.  Multiomic Approaches Reveal Hormonal Modulation and Nitrogen Uptake and Assimilation in the Initial Growth of Maize Inoculated with Herbaspirillum seropedicae , 2022, Plants.

[6]  R. R. Passos,et al.  Biochar and swine wastewater: Effects on soil fertility of different textures and corn nutrition , 2021, Revista Ceres.

[7]  Jizhong Zhou,et al.  Theory of microbial coexistence in promoting soil–plant ecosystem health , 2021, Biology and Fertility of Soils.

[8]  Carlos L. R. Santos,et al.  Agronomic evaluation of Herbaspirillum seropedicae strain ZAE94 as an inoculant to improve maize yield in Brazil , 2021 .

[9]  M. Hungria,et al.  Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil , 2021, Applied Soil Ecology.

[10]  M. Hungria,et al.  Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants , 2021 .

[11]  F. Olivares,et al.  Quantitative proteomic analysis reveals altered enzyme expression profile in Zea mays roots during the early stages of colonization by Herbaspirillum seropedicae , 2021, Proteomics.

[12]  R. Bonilla,et al.  Potential of Herbaspirillum and Azospirillum Consortium to Promote Growth of Perennial Ryegrass under Water Deficit , 2021, Microorganisms.

[13]  M. Semenov,et al.  Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems , 2020 .

[14]  Rebyson Bissaco Guidinelle,et al.  Resposta do capim-marandu e milheto em rejeito de mineração à aplicação de bioestimulantes vegetais , 2020 .

[15]  F. Steiner,et al.  Co-inoculation of peanut (Arachis hypogaea L.) with Bradyrhizobium and Azospirillum promotes greater tolerance to drought , 2020 .

[16]  Y. Liao,et al.  Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth , 2020 .

[17]  Y. Rouphael,et al.  Editorial: Biostimulants in Agriculture , 2020, Frontiers in Plant Science.

[18]  L. Canellas,et al.  Herbaspirillum , 2020, Definitions.

[19]  D. Zeffa,et al.  Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018 , 2020, PeerJ.

[20]  D. F. Ferreira,et al.  SISVAR: A COMPUTER ANALYSIS SYSTEM TO FIXED EFFECTS SPLIT PLOT TYPE DESIGNS , 2019 .

[21]  F. Olivares,et al.  Humic acids and Herbaspirillum seropedicae change the extracellular H+ flux and gene expression in maize roots seedlings , 2019, Chemical and Biological Technologies in Agriculture.

[22]  J. Viégas,et al.  Effect of Nitrogen Topdressing Fertilization and Inoculation of Seeds with Azospirillum brasilense on Corn Yield and Agronomic Characteristics , 2019 .

[23]  Long Liu,et al.  Microbial response to acid stress: mechanisms and applications , 2019, Applied Microbiology and Biotechnology.

[24]  Harold Patiño,et al.  Brasil , 2018, Perfiles Arancelarios en el Mundo.

[25]  V. Reis,et al.  Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae , 2018, Archives of Microbiology.

[26]  M. Megias,et al.  Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. , 2018, Functional plant biology : FPB.

[27]  M. V. D. van der Heijden,et al.  Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming , 2018, Microbiome.

[28]  F. Olivares,et al.  Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action , 2017, Chemical and Biological Technologies in Agriculture.

[29]  K. Balestrasse,et al.  Inoculation with Azospirillum sp. and Herbaspirillum sp. Bacteria Increases the Tolerance of Maize to Drought Stress , 2017, Microorganisms.

[30]  F. Olivares,et al.  Mixed rhizobia and Herbaspirillum seropedicae inoculations with humic acid-like substances improve water-stress recovery in common beans , 2017, Chemical and Biological Technologies in Agriculture.

[31]  Françoise Gilard,et al.  Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense , 2017, PloS one.

[32]  V. F. Guimarães,et al.  Co-inoculation of Azospirillum brasilense and Herbaspirillum seropedicae in maize , 2016 .

[33]  Hans C. Bernstein,et al.  Engineering microbial consortia for controllable outputs , 2016, The ISME Journal.

[34]  C. H. Brito,et al.  Aspectos morfofisiológicos de plantas de milho e bioquímico do solo em resposta à adubação nitrogenada e à inoculação com Azospirillum brasilense , 2015 .

[35]  Adriana Ambrosini,et al.  Plant growth-promoting bacteria as inoculants in agricultural soils , 2015, Genetics and molecular biology.

[36]  D. Tyler,et al.  Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality , 2015 .

[37]  P. Brown,et al.  Biostimulants in agriculture , 2015, Front. Plant Sci..

[38]  N. Vassilev,et al.  A contribution to set a legal framework for biofertilisers , 2014, Applied Microbiology and Biotechnology.

[39]  J. Vanderleyden,et al.  Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum , 2014, Journal of Plant Growth Regulation.

[40]  Y. Bashan,et al.  Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013) , 2014, Plant and Soil.

[41]  B. Touraine,et al.  Plant growth-promoting rhizobacteria and root system functioning , 2013, Front. Plant Sci..

[42]  F. Olivares,et al.  A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.) , 2013, Plant and Soil.

[43]  Bernard R. Glick,et al.  Plant Growth-Promoting Bacteria: Mechanisms and Applications , 2012, Scientifica.

[44]  Xuan Yu,et al.  Co-inoculation with phosphate-solubilzing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut , 2012 .

[45]  S. Mafakheri,et al.  Absorption efficiency of N, P, K through triple inoculation of wheat (Triticum aestivum L.) by Azospirillum brasilense, Streptomyces sp., Glomus intraradices and manure application , 2011, Physiology and Molecular Biology of Plants.

[46]  A. Bala,et al.  Assessment of soil quality using soil organic carbon and total nitrogen and microbial properties in tropical agroecosystems. , 2011 .

[47]  F. Pedrosa,et al.  Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil , 2010, Plant and Soil.

[48]  C. Bolster,et al.  EFFECT OF LONG-TERM SWINE EFFLUENT APPLICATION ON SELECTED SOIL PROPERTIES , 2008 .

[49]  Jos Vanderleyden,et al.  Indole-3-acetic acid in microbial and microorganism-plant signaling. , 2007, FEMS microbiology reviews.

[50]  R. A. Marenco,et al.  Fotossíntese, condutância estomática e potencial hídrico foliar em árvores jovens de andiroba (Carapa guianensis) , 2007 .

[51]  E. F. Caires,et al.  Aplicação de gesso agrícola e especiação iônica da solução de um Latossolo sob sistema plantio direto , 2007 .

[52]  N. F. Barros,et al.  Níveis críticos de fósforo, para milho, em casa de vegetação, de acordo com a sua localização no solo , 2006 .

[53]  F. Olivares,et al.  Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply , 2006 .

[54]  Y. Bashan,et al.  Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. , 2004, Naturwissenschaften.

[55]  M. Hungria,et al.  ENVIRONMENTAL FACTORS AFFECTING N2 FIXATION IN GRAIN LEGUMES IN THE TROPICS, WITH AN EMPHASIS ON BRAZIL , 2000 .

[56]  G. Holguin,et al.  Survival of Azospirillum brasilense in the Bulk Soil and Rhizosphere of 23 Soil Types , 1995, Applied and environmental microbiology.

[57]  Joseph W. Kloepper,et al.  Free-living bacterial inocula for enhancing crop productivity , 1989 .

[58]  J. M. Bremner,et al.  A rapid and precise method for routine determination of organic carbon in soil , 1988 .

[59]  J. Davison Plant Beneficial Bacteria , 1988, Bio/Technology.

[60]  J. M. Day,et al.  Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites , 1976 .

[61]  D. A. Klein,et al.  SOIL DEHYDROGENASE ACTIVITY , 1964 .

[62]  S. K. Upadhyay,et al.  Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress , 2021, Current Research in Environmental Sustainability.

[63]  M. M. Raffi,et al.  Azospirillum-biofertilizer for sustainable cereal crop production: Current status , 2021 .

[64]  Ajar Nath Yadav,et al.  Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion, and Biotechnological Applications for Sustainable Agriculture , 2019, Plant Growth Promoting Rhizobacteria for Agricultural Sustainability.

[65]  F. Olivares,et al.  Foliar application of plant growth-promoting bacteria and humic acid increase maize yields , 2015 .

[66]  N. Comerford,et al.  Author ' s personal copy Characterization of soil organic carbon pools by acid hydrolysis , 2008 .

[67]  F. Galvani,et al.  Adequação da metodologia Kjeldahl para determinação de nitrogênio total e proteína bruta. , 2006 .

[68]  E. C. Machado,et al.  Trocas gasosas e fluorescência da clorofila em seis cultivares de cafeeiro sob estresse de alumínio , 2005 .

[69]  F. Eivazi,et al.  Glucosidases and galactosidases in soils , 1988 .

[70]  David S. Powlson,et al.  Measurement of microbial biomass phosphorus in soil , 1982 .

[71]  R. K.,et al.  Soil quality indicator properties-in mid-Atlantic soils as influenced by conservation management , 2022 .