Enhanced global flower pollination algorithm for parameter identification of chaotic and hyper-chaotic system

AbstractThe problem of system parameter identification is a fundamental problem in the field of nonlinear science, which can be described as a multidimensional optimization problem. In this paper, an enhanced global flower pollination algorithm (GFPA) is proposed for parameter identification of chaotic and hyper-chaotic systems. The motion trajectory of the flower pollination algorithm is analyzed for the first time, and the equation of the algorithm exploration phase is improved by the chaotic mapping method to ensure the convergence of the algorithm in the exploration phase. In addition, in order to improve the convergence speed of the algorithm, the update method of the exploitation phase is reset by using the best information to guide the searching. Through analysis, the proposed new algorithm can guarantee the convergence of the algorithm without increasing the time complexity. Finally, we identify and validate the system of the Lorenz, Rössler, Chen and the system of the Rössler hyper-chaotic, Chen hyper-chaotic. The experimental results show that GFPA has better identification effect.

[1]  Zhenghao Ding,et al.  Parameters identification for chaotic systems based on a modified Jaya algorithm , 2018, Nonlinear Dynamics.

[2]  Yasser Shekofteh,et al.  Cost function based on hidden Markov models for parameter estimation of chaotic systems , 2019, Soft Comput..

[3]  J. Chou,et al.  Parameter identification of chaotic systems using improved differential evolution algorithm , 2010 .

[4]  Amer Draa,et al.  On the performances of the flower pollination algorithm - Qualitative and quantitative analyses , 2015, Appl. Soft Comput..

[5]  Juan A. Lazzús,et al.  Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm , 2016 .

[6]  Chang Chen,et al.  Parameter estimation of chaotic systems by an oppositional seeker optimization algorithm , 2014 .

[7]  Jun Wang,et al.  An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation , 2016, Comput. Intell. Neurosci..

[8]  Yang Chen,et al.  Novel fruit fly algorithm for global optimisation and its application to short-term wind forecasting , 2019, Connect. Sci..

[9]  Jun Sun,et al.  Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method , 2010 .

[10]  Xiaoyi Feng,et al.  Parameter estimation of nonlinear chaotic system by improved TLBO strategy , 2016, Soft Comput..

[11]  Yanbin Yuan,et al.  Parameter Identification of Chaotic and Hyper-Chaotic Systems Using Synchronization-Based Parameter Observer , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[13]  Lei Wang,et al.  Parameter identification of chaotic systems using artificial raindrop algorithm , 2015, J. Comput. Sci..

[14]  Xin-She Yang,et al.  Flower pollination algorithm: A novel approach for multiobjective optimization , 2014, ArXiv.

[15]  Han Xiao,et al.  Parameters identification of chaotic system by chaotic gravitational search algorithm , 2012, Chaos, Solitons & Fractals.

[16]  Li Wang,et al.  Incremental response sensitivity approach for parameter identification of chaotic and hyperchaotic systems , 2017 .

[17]  Alireza Alfi,et al.  Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems , 2018, Chaos, Solitons & Fractals.

[18]  Yicong Zhou,et al.  Discrete Wheel-Switching Chaotic System and Applications , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Hamidreza Modares,et al.  Parameter identification of chaotic dynamic systems through an improved particle swarm optimization , 2010, Expert Syst. Appl..

[20]  Rohit Salgotra,et al.  Application of mutation operators to flower pollination algorithm , 2017, Expert Syst. Appl..

[21]  Nguyen Ngoc Son,et al.  Parameter identification using adaptive differential evolution algorithm applied to robust control of uncertain nonlinear systems , 2018, Appl. Soft Comput..

[22]  Haipeng Peng,et al.  Parameter estimation of dynamical systems via a chaotic ant swarm. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Emad Nabil,et al.  A Modified Flower Pollination Algorithm for Global Optimization , 2016, Expert Syst. Appl..

[24]  Hamed Kharrati,et al.  Parameter identification of chaotic systems using a shuffled backtracking search optimization algorithm , 2018, Soft Comput..

[25]  Xiangtao Li,et al.  Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm , 2014 .

[26]  Jun Wang,et al.  A hybrid adaptive cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation , 2015, Neural Computing and Applications.

[27]  Heikki Haario,et al.  Online identification of large-scale chaotic system , 2018 .

[28]  Witold Pedrycz,et al.  Improved learning algorithm for two-layer neural networks for identification of nonlinear systems , 2019, Neurocomputing.

[29]  Yong Wang,et al.  Parameter estimation for chaotic systems via a hybrid flower pollination algorithm , 2017, Neural Computing and Applications.

[30]  Liang Gao,et al.  An improved fruit fly optimization algorithm for continuous function optimization problems , 2014, Knowl. Based Syst..