Spin blockade and exchange in Coulomb-confined silicon double quantum dots.

Electron spins confined to phosphorus donors in silicon are promising candidates as qubits because of their long coherence times, exceeding seconds in isotopically purified bulk silicon. With the recent demonstrations of initialization, readout and coherent manipulation of individual donor electron spins, the next challenge towards the realization of a Si:P donor-based quantum computer is the demonstration of exchange coupling in two tunnel-coupled phosphorus donors. Spin-to-charge conversion via Pauli spin blockade, an essential ingredient for reading out individual spin states, is challenging in donor-based systems due to the inherently large donor charging energies (∼45 meV), requiring large electric fields (>1 MV m(-1)) to transfer both electron spins onto the same donor. Here, in a carefully characterized double donor-dot device, we directly observe spin blockade of the first few electrons and measure the effective exchange interaction between electron spins in coupled Coulomb-confined systems.

[1]  Yia-Chung Chang,et al.  Effects of J-gate potential and uniform electric field on a coupled donor pair in Si for quantum computing , 2002 .

[2]  G. Lanzino,et al.  An introductory overview of orbital tumors. , 2001, Neurosurgical focus.

[3]  T. Boykin,et al.  Atomistic Simulation of Realistically Sized Nanodevices Using NEMO 3-D—Part I: Models and Benchmarks , 2007, IEEE Transactions on Electron Devices.

[4]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[5]  Michelle Y. Simmons,et al.  Phosphine Adsorption and Dissociation on the Si(001) Surface: An Ab Initio Survey of Structures , 2005 .

[6]  Electron exchange coupling for single-donor solid-state spin qubits , 2003, cond-mat/0309417.

[7]  A. G. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2006 .

[8]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[9]  Gerhard Klimeck,et al.  High precision quantum control of single donor spins in silicon. , 2007, Physical review letters.

[10]  M. Lagally,et al.  Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot , 2007, 0708.0794.

[11]  B. E. Kane,et al.  Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.

[12]  H. Ryu,et al.  Ohm’s Law Survives to the Atomic Scale , 2012, Science.

[13]  B. Weber,et al.  Engineering independent electrostatic control of atomic-scale (∼4 nm) silicon double quantum dots. , 2012, Nano letters.

[14]  X Jehl,et al.  Detection of a large valley-orbit splitting in silicon with two-donor spectroscopy. , 2012, Physical review letters.

[15]  Xuedong Hu,et al.  Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.

[16]  X Jehl,et al.  Coherent coupling of two dopants in a silicon nanowire probed by Landau-Zener-Stückelberg interferometry. , 2013, Physical review letters.

[17]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[18]  M. Y. Simmons,et al.  A single atom transistor , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[19]  Mats-Erik Pistol,et al.  Few electron double quantum dots in InAs/InP nanowire heterostructures. , 2007, Nano letters.

[20]  A. Gossard,et al.  Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot , 2004, cond-mat/0410679.

[21]  C. Yang,et al.  Spin filling of valley–orbit states in a silicon quantum dot , 2011, Nanotechnology.

[22]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[23]  Andrew D. Greentree,et al.  Coherent electronic transfer in quantum dot systems using adiabatic passage , 2004 .

[24]  S. Tarucha,et al.  Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System , 2002, Science.

[25]  Y. Nazarov Quantum interference, tunnel junctions and resonant tunneling interferometer , 1993 .

[26]  Electronic states in silicon quantum dots: Multivalley artificial atoms , 2003, cond-mat/0304228.

[27]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[28]  Sougato Bose,et al.  Quantum communication through spin chain dynamics: an introductory overview , 2007, 0802.1224.

[29]  R. Rahman,et al.  Spin readout and addressability of phosphorus-donor clusters in silicon , 2012, Nature Communications.

[30]  R. S. Ross,et al.  Measurement of valley splitting in high-symmetry Si/SiGe quantum dots , 2010, 1012.1363.