Chronoamperometric Study of Ammonia Oxidation in a Direct Ammonia Alkaline Fuel Cell under the Influence of Microgravity

[1]  Shahriar Shams,et al.  Ammonia-fed fuel cells: a comprehensive review , 2016 .

[2]  T. Bayer,et al.  Alkaline anion exchange membranes based on KOH-treated multilayer graphene oxide , 2016 .

[3]  A. Azad,et al.  Proton-conducting electrolytes for direct methanol and direct urea fuel cells – A state-of-the-art review , 2016 .

[4]  M. Kannan,et al.  Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications. , 2016, Biosensors & bioelectronics.

[5]  H. White,et al.  Electrochemical Nucleation of Stable N2 Nanobubbles at Pt Nanoelectrodes. , 2015, Journal of the American Chemical Society.

[6]  Kerstin Eckert,et al.  Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[7]  J. Casademunt,et al.  Turbulent Bubble Jets in Microgravity. Spatial Dispersion and Velocity Fluctuations , 2015 .

[8]  Long Luo,et al.  Electrochemical Measurements of Single H2 Nanobubble Nucleation and Stability at Pt Nanoelectrodes. , 2014, The journal of physical chemistry letters.

[9]  J. Solla-Gullón,et al.  Synthesis and electrocatalytic properties of H2SO4 -induced (100) Pt nanoparticles prepared in water-in-oil microemulsion. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  M. Möbius,et al.  Bubble formation at a gas-evolving microelectrode. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[11]  J. Solla-Gullón,et al.  Synthesis of Pt Nanoparticles in Water-in-Oil Microemulsion: Effect of HCl on Their Surface Structure. , 2014, Journal of the American Chemical Society.

[12]  G. Casillas,et al.  Platinum electrodeposition on unsupported carbon nano-onions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[13]  D. Cheddie Ammonia as a Hydrogen Source for Fuel Cells: A Review , 2012 .

[14]  C. Cabrera,et al.  Microgravity effects on the electrochemical oxidation of ammonia: A parabolic flight experiment , 2012 .

[15]  L. Echegoyen,et al.  Carbon Nano Onions , 2010 .

[16]  W. Winiwarter,et al.  How a century of ammonia synthesis changed the world , 2008 .

[17]  N. Sonoyama Effect of micro gravity on the product selectivity of dichlorodifluoromethane electrolysis at metal supported gas diffusion electrodes , 2007 .

[18]  S. J. Vet,et al.  From waste to energy: First experimental bacterial fuel cells onboard the international space station , 2007 .

[19]  Sung Kwon Cho,et al.  Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles. , 2007, Lab on a chip.

[20]  Ramkumar N. Parthasarathy,et al.  Bubble formation from a free-standing tube in microgravity , 2006 .

[21]  B. Webbon,et al.  Bubble formation at a submerged orifice in reduced gravity , 1996 .

[22]  R. Shankar Subramanian,et al.  THERMOCAPILLARY MIGRATION OF BUBBLES AND DROPS AT MODERATE VALUES OF THE MARANGONI NUMBER IN REDUCED GRAVITY , 1996 .

[23]  A. Negishi,et al.  Water electrolysis under microgravity condition by parabolic flight , 1993 .

[24]  Heinz Gerischer,et al.  Untersuchungen Zur anodischen Oxidation von Ammoniak an Platin-Elektroden , 1970 .

[25]  C. Herman,et al.  Experimental visualization of bubble formation from an orifice in microgravity in the presence of electric fields , 2002 .

[26]  B. Webbon,et al.  The isolated bubble regime in pool nucleate boiling , 1997 .

[27]  Marvin Warshay,et al.  The fuel cell in space: Yesterday, today and tomorrow , 1990 .

[28]  T. L. Labus,et al.  MARANGONI BUBBLE MOTION PHENOMENON IN ZERO GRAVITY , 1980 .