Orientation of Ordered Scaffolds

Despite the recent progress in genome sequencing and assembly, many of the currently available assembled genomes come in a draft form. Such draft genomes consist of a large number of genomic fragments (scaffolds), whose order and/or orientation (i.e., strand) in the genome are unknown. There exist various scaffold assembly methods, which attempt to determine the order and orientation of scaffolds along the genome chromosomes. Some of these methods (e.g., based on FISH physical mapping, chromatin conformation capture, etc.) can infer the order of scaffolds, but not necessarily their orientation. This leads to a special case of the scaffold orientation problem (i.e., deducing the orientation of each scaffold) with a known order of the scaffolds.

[1]  Douglas R. Smith,et al.  Assembly reconciliation , 2008, Bioinform..

[2]  Mark J. Clement,et al.  ScaffoldScaffolder: solving contig orientation via bidirected to directed graph reduction , 2015, Bioinform..

[3]  Marcel J. T. Reinders,et al.  GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies , 2012, Bioinform..

[4]  Bernardo J. Clavijo,et al.  Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. , 2017, Genome research.

[5]  Zhi-Zhong Chen,et al.  Approximation algorithms for the scaffolding problem and its generalizations , 2018, Theor. Comput. Sci..

[6]  Adel Dayarian,et al.  SOPRA: Scaffolding algorithm for paired reads via statistical optimization , 2010, BMC Bioinformatics.

[7]  Sergey Koren,et al.  Bambus 2: scaffolding metagenomes , 2011, Bioinform..

[8]  S. Salzberg,et al.  Hierarchical scaffolding with Bambus. , 2003, Genome research.

[9]  Max A. Alekseyev,et al.  Multi-genome Scaffold Co-assembly Based on the Analysis of Gene Orders and Genomic Repeats , 2016, ISBRA.

[10]  James H. Bullard,et al.  A hybrid approach for the automated finishing of bacterial genomes , 2012, Nature Biotechnology.

[11]  Walter Pirovano,et al.  SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information , 2014, BMC Bioinformatics.

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[14]  Brendan L. O’Connell,et al.  Chromosome-scale shotgun assembly using an in vitro method for long-range linkage , 2015, Genome research.

[15]  Wing-Kin Sung,et al.  Opera: Reconstructing Optimal Genomic Scaffolds with High-Throughput Paired-End Sequences , 2011, J. Comput. Biol..

[16]  J. Saxe,et al.  A general method for solving divide-and-conquer recurrences , 1980, SIGA.

[17]  Joel Armstrong,et al.  Chromosome assembly of large and complex genomes using multiple references. , 2018, Genome research.

[18]  Xun Xu,et al.  Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce , 2017, Nature Communications.

[19]  Walter Pirovano,et al.  BIOINFORMATICS APPLICATIONS , 2022 .

[20]  Annie Chateau,et al.  Ancestral gene synteny reconstruction improves extant species scaffolding , 2015, bioRxiv.

[21]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[22]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[23]  Vangelis Th. Paschos,et al.  Differential approximation of min sat , 2005, Eur. J. Oper. Res..

[24]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[25]  Steven J. M. Jones,et al.  LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads , 2015, GigaScience.

[26]  Max A. Alekseyev,et al.  CAMSA: a Tool for Comparative Analysis and Merging of Scaffold Assemblies , 2016 .

[27]  James C. Schnable,et al.  ALLMAPS: robust scaffold ordering based on multiple maps , 2015, Genome Biology.

[28]  David Tse,et al.  FinisherSC : A repeat-aware tool for upgrading de-novo assembly using long reads , 2014, bioRxiv.

[29]  Mihai Pop,et al.  Scaffolding and validation of bacterial genome assemblies using optical restriction maps , 2008, Bioinform..

[30]  M. Berriman,et al.  A comprehensive evaluation of assembly scaffolding tools , 2014, Genome Biology.

[31]  Vangelis Th. Paschos,et al.  Differential approximation for optimal satisfiability and related problems , 2003, Eur. J. Oper. Res..

[32]  Han Fang,et al.  "Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions" , 2014 .

[33]  Eugene W. Myers,et al.  Combinatorial algorithms for DNA sequence assembly , 1995, Algorithmica.