MULTIWALL CARBON NANOTUBE ELASTOMERIC COMPOSITES: A REVIEW

Abstract Nanostructured materials gained great importance in the past decade on account of their wide range of potential applications in many areas. A large interest is devoted to carbon nanotubes that exhibit exceptional electrical and mechanical properties and can therefore be used for the development of a new generation of composite materials. Nevertheless, poor dispersion and poor interfacial bonding limit the full utilization of carbon nanotubes for reinforcing polymeric media. In this paper, recent advances on carbon nanotubes and their composites will be presented through results of the author's research, essentially based on filled elastomeric networks. The intrinsic potential of carbon nanotubes as reinforcing filler in elastomeric materials will be demonstrated. It will be shown that, despite a poor dispersion, small filler loadings improve substantially the mechanical and electrical behaviors of the soft matrix. With the addition of 1 phr of multiwall carbon nanotubes in a styrene–butadiene copolymer, a 45% increase in modulus and a 70% increase in the tensile length are achieved. Straining effects investigated by atomic force microscopy and infrared and Raman spectroscopies, provide interesting results for the understanding of the mechanical behavior of these nanotube-based composites. All the experimental data lead to the belief that the orientation of the nanotubes plays a major role in the mechanical reinforcement. The strong restriction in equilibrium swelling in toluene with the MWNT content is not ascribed to filler–matrix interfacial interactions but to the occlusion of rubber into the aggregates. On the other hand, carbon nanotubes impart conductivity to the insulator matrix. Between 2 and 4 phr, the conductivity increases by five orders of magnitude reflecting the formation of a percolating network. Changes in resistivity under uniaxial extension completed by AFM observations of stretched composites bring new insights into the properties of these composites by highlighting the contribution of orientational effects.

[1]  Y. Saito,et al.  Growth conditions of double-walled carbon nanotubes in arc discharge , 2003 .

[2]  Frank T. Fisher,et al.  Direct Observation of Polymer Sheathing in Carbon Nanotube-Polycarbonate Composites , 2003 .

[3]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[4]  Meng-jiao Wang Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates , 1998 .

[5]  Yuegang Zhang,et al.  Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature , 1999 .

[6]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[7]  R. Smalley,et al.  Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. , 2001, Journal of the American Chemical Society.

[8]  G. Xue,et al.  Synthesis and characterization of carbon nanotube/polypyrrole core–shell nanocomposites via in situ inverse microemulsion , 2005 .

[9]  R. E. Whittaker,et al.  Low Strain Dynamic Properties of Filled Rubbers , 1971 .

[10]  Y. Ikeda,et al.  In Situ Filling of Silica onto “Green” Natural Rubber by the Sol—Gel Process , 2001 .

[11]  J. E. Mark,et al.  Synthesis, structure, and properties of hybrid organic–inorganic composites based on polysiloxanes. I. Poly(dimethylsiloxane) elastomers containing silica , 1998 .

[12]  M. Meyyappan,et al.  Large-Scale Fabrication of Carbon Nanotube Probe Tips for Atomic Force Microscopy Critical Dimension Imaging Applications , 2004 .

[13]  J. Fischer,et al.  Coagulation method for preparing single‐walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability , 2003 .

[14]  I. W. Cheong,et al.  A novel synthesis of polymer brush on multiwall carbon nanotubes bearing terminal monomeric unit , 2006 .

[15]  G. Nando,et al.  Organomodified montmorillonite as filler in natural and synthetic rubber , 2004 .

[16]  Anders E Boström,et al.  Antiplane shear waves from a piezoelectric strip actuator: exact versus effective boundary condition solutions , 2004 .

[17]  H. Wagner,et al.  Mechanical properties of carbon nanoparticle-reinforced elastomers , 2003 .

[18]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[19]  Jin-tae Kim,et al.  Curing and barrier properties of NBR/organo‐clay nanocomposite , 2004 .

[20]  Karen Lozano,et al.  Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes , 2004 .

[21]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[22]  B. Bresson,et al.  Synthesis, structure and morphology of poly(dimethylsiloxane) networks filled with in situ generated silica particles , 2005 .

[23]  F. Bueche Molecular basis for the mullins effect , 1960 .

[24]  J. E. Mark,et al.  Synthesis, structure, and properties of hybrid organic–inorganic composites based on polysiloxanes. II. Comparisons between poly(methylphenylsiloxane) and poly(dimethylsiloxane), and between titania and silica , 1998 .

[25]  Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy , 2001 .

[26]  Lionel Flandin,et al.  Effect of strain on the properties of an ethylene–octene elastomer with conductive carbon fillers , 2000 .

[27]  Reinforcement of elastomers by carbon black , 1971 .

[28]  J. Kenny,et al.  Dynamic mechanical and Raman spectroscopy studies on interaction between single‐walled carbon nanotubes and natural rubber , 2004 .

[29]  M. P. Wagner Reinforcing Silicas and Silicates , 1976 .

[30]  J. E. Mark,et al.  Organically Modified Layered Silicates as Reinforcing Fillers for Natural Rubber , 2002 .

[31]  T. K. Chaki,et al.  Electrical and mechanical properties of conducting carbon black filled composites based on rubber and rubber blends , 1999 .

[32]  N. Wilson,et al.  Single-Wall Carbon Nanotube Conducting Probe Tips , 2002 .

[33]  A. R. Payne,et al.  Hysteresis in Polymers and its Relation to Strength , 1968 .

[34]  James J.C. Busfield,et al.  Electrical and mechanical behavior of filled elastomers. I. The effect of strain , 2003 .

[35]  C. L. Cheung,et al.  Growth and fabrication with single-walled carbon nanotube probe microscopy tips , 2000 .

[36]  E. M. Dannenberg,et al.  The Effects of Surface Chemical Interactions on the Properties of Filler-Reinforced Rubbers , 1975 .

[37]  L. Bokobza,et al.  Straining effects in silica-filled elastomers investigated by atomic force microscopy: From macroscopic stretching to nanoscale strainfield , 2003 .

[38]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[39]  U. Sundararaj,et al.  Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .

[40]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[41]  ScienceDirect,et al.  Composites science and technology , 1985 .

[42]  L. Mullins Softening of Rubber by Deformation , 1969 .

[43]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[44]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[45]  Hiroyuki Muramatsu,et al.  Development and Application of Carbon Nanotubes , 2006 .

[46]  R. Gorga,et al.  Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes , 2004 .

[47]  Peter R. Shewry,et al.  Wheat: chemistry and technology. , 2009 .

[48]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[49]  Karl Schulte,et al.  Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites , 2004 .

[50]  G. Kraus Reinforcement of elastomers by carbon black , 1978 .

[51]  J. Karger‐Kocsis,et al.  Natural rubber-based nanocomposites by latex compounding with layered silicates , 2003 .

[52]  Jiang Zhu,et al.  Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization , 2003 .

[53]  T. Okazaki,et al.  Syntheses of single- and double-wall carbon nanotubes by the HTPAD and HFCVD methods , 2004 .

[54]  J. Nagy,et al.  Large scale production of short functionalized carbon nanotubes , 2002 .

[55]  L. Brinson,et al.  Erratum: Functionalized SWNT/polymer nanocomposites for dramatic property improvement (Journal of Polymer Science, Part B: Polymer Physics (2005) 43 (2269-2279)) , 2006 .

[56]  U. Schlecht,et al.  Electrochemical modification of single carbon nanotubes. , 2002, Angewandte Chemie.

[57]  L. Bokobza,et al.  On the use of carbon nanotubes as reinforcing fillers for elastomeric materials , 2006 .

[58]  D. C. Edwards Polymer-filler interactions in rubber reinforcement , 1990 .

[59]  J. Cavaillé,et al.  Reinforcement effects of vapour grown carbon nanofibres as fillers in rubbery matrices , 2005 .

[60]  A. R. Payne A note on the conductivity and modulus of carbon black-loaded rubbers , 1965 .

[61]  I. Chung,et al.  Singlewall carbon nanotubes covered with polystyrene nanoparticles by in-situ miniemulsion polymerization , 2006 .

[62]  G. Odegard,et al.  Effect of Nanotube Functionalization on the Elastic Properties of Polyethylene Nanotube Composites , 2005 .

[63]  A. R. Payne,et al.  Hysteresis and strength of rubbers , 1968 .

[64]  E. Guth Theory of Filler Reinforcement , 1945 .

[65]  R. Chen,et al.  Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy , 2002 .

[66]  L. Bokobza The Reinforcement of Elastomeric Networks by Fillers , 2004 .

[67]  S. Rotkin NANOTUBE LIGHT-CONTROLLED ELECTRONIC SWITCH , 2002 .

[68]  S. Akita,et al.  Carbon nanotube tips for a scanning probe microscope: their fabrication and properties , 1999 .

[69]  L. Tapasztó,et al.  Synthesis of carbon nanotubes by spray pyrolysis and their investigation by electron microscopy , 2005 .

[70]  Wenping Jiang,et al.  Rapid Production of Carbon Nanotubes by High-Power Laser Ablation , 2005 .

[71]  Malcolm L. H. Green,et al.  Mechanical damage of carbon nanotubes by ultrasound , 1996 .

[72]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[73]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[74]  Hongzheng Chen,et al.  Journal of Polymer Science Part A-Polymer Chemistry , 2008 .

[75]  L. Bokobza,et al.  On the Mullins Effect in Silica-Filled Polydimethylsiloxane Networks , 2001 .

[76]  P. Dubois,et al.  Interfacial interaction in EVA-carbon nanotube and EVA-clay nanocomposites , 2007 .

[77]  S. Ahmed,et al.  A review of particulate reinforcement theories for polymer composites , 1990 .

[78]  F. Ramsteiner,et al.  On the tensile behaviour of filled composites , 1984 .

[79]  Ya‐Ping Sun,et al.  Sonication-Assisted Functionalization and Solubilization of Carbon Nanotubes , 2002 .

[80]  Martin Müller,et al.  Reinforcement of poly(dimethylsiloxane) networks by mica flakes , 2001 .

[81]  H. Kim,et al.  Comparison of the properties of waterborne polyurethane/multiwalled carbon nanotube and acid‐treated multiwalled carbon nanotube composites prepared by in situ polymerization , 2005 .

[82]  A. Gu,et al.  Effect of multi‐walled carbon nanotubes dispersity on the light transmittancy of multi‐walled carbon nanotubes/epoxy composites , 2006 .

[83]  Avrom I. Medalia,et al.  Effect of Carbon Black on Dynamic Properties of Rubber Vulcanizates , 1978 .

[84]  T. K. Chaki,et al.  Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites , 2002 .

[85]  G. Kraus Reinforcement of Elastomers , 1965 .

[86]  J. Chauvin,et al.  Reinforcement of natural rubber: use of in situ generated silicas and nanofibres of sepiolite , 2005 .

[87]  A. Voet Reinforcement of elastomers by fillers: Review of period 1967–1976 , 1980 .

[88]  L. Bokobza,et al.  Investigation of the Payne Effect and its Temperature Dependence on Silica-Filled Polydimethylsiloxane Networks. Part I: Experimental Results , 2005 .

[89]  R. Narain,et al.  Modification of carboxyl‐functionalized single‐walled carbon nanotubes with biocompatible, water‐soluble phosphorylcholine and sugar‐based polymers: Bioinspired nanorods , 2006 .

[90]  Meng-Kao Yeh,et al.  Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes , 2006 .

[91]  L. Brinson,et al.  Functionalized SWNT/polymer nanocomposites for dramatic property improvement , 2005 .

[92]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[93]  Jianyi Shen,et al.  Cure kinetics of carbon nanotube/tetrafunctional epoxy nanocomposites by isothermal differential scanning calorimetry , 2004 .

[94]  A. Adronov,et al.  Solubilizing single‐walled carbon nanotubes with pyrene‐functionalized block copolymers , 2006 .

[95]  M. Arroyo,et al.  Organo-montmorillonite as substitute of carbon black in natural rubber compounds , 2003 .

[96]  R. Gorga,et al.  Morphological and mechanical properties of carbon nanotube/polymer composites via melt compounding , 2006 .

[97]  S. Arepalli Laser ablation process for single-walled carbon nanotube production. , 2004, Journal of nanoscience and nanotechnology.

[98]  J. Halpin Stiffness and Expansion Estimates for Oriented Short Fiber Composites , 1969 .

[99]  Polycarpos Pissis,et al.  Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites , 2005 .

[100]  L. Bokobza,et al.  Atomic force microscopy investigation of filled elastomers and comparison with transmission electron microscopy — application to silica-filled silicone elastomers , 2001 .

[101]  H. Jeon,et al.  Structure-property relationships in exfoliated polyisoprene/clay nanocomposites , 2004 .

[102]  S. Kim,et al.  Influence of multiwall carbon nanotube on physical properties of poly(ethylene 2,6‐naphthalate) nanocomposites , 2006 .

[103]  T. Hiraoka,et al.  Selective synthesis of double-wall carbon nanotubes by CCVD of acetylene using zeolite supports , 2003 .

[104]  Darren J. Martin,et al.  Polyethylene multiwalled carbon nanotube composites , 2005 .

[105]  Jun Liu,et al.  Surfactant-assisted processing of carbon nanotube/polymer composites , 2000 .

[106]  J. Tour,et al.  Glass transition of polymer/single-walled carbon nanotube composite films , 2003 .

[107]  D. Zakharov,et al.  Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method , 2001 .

[108]  T. Okazaki,et al.  New Synthesis of High-Quality Double-Walled Carbon Nanotubes by High-Temperature Pulsed Arc Discharge , 2003 .

[109]  Pavel Nikolaev,et al.  Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process , 2001 .

[110]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[111]  Francisco Pompeo,et al.  Water Solubilization of Single-Walled Carbon Nanotubes by Functionalization with Glucosamine , 2002 .

[112]  E. Siochi,et al.  Stable dispersion of single wall carbon nanotubes in polyimide: the role of noncovalent interactions , 2004 .

[113]  Andrea E O'Rear,et al.  SWNT-Filled Thermoplastic and Elastomeric Composites Prepared by Miniemulsion Polymerization , 2002 .

[114]  Hsu-Chiang Kuan,et al.  Molecular mobility of free‐radical‐functionalized carbon‐nanotube/siloxane/poly(urea urethane) nanocomposites , 2005 .

[115]  M. Yeh,et al.  Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement , 2004 .

[116]  T. D. Fornes,et al.  Modeling properties of nylon 6/clay nanocomposites using composite theories , 2003 .

[117]  R. Spontak,et al.  Volume‐exclusion effects in polyethylene blends filled with carbon black, graphite, or carbon fiber , 2002 .

[118]  I. Kinloch,et al.  Prospects for nanotube and nanofibre composites , 2004 .

[119]  M. Burghard,et al.  Electrical Transport and Confocal Raman Studies of Electrochemically Modified Individual Carbon Nanotubes , 2003 .