Investigação sobre métodos para redução da dimensionalidade dos dados em imagens hiperespectrais

In the present study, we propose a new simple approach to reduce the data dimensionality in hyperspectral image data. The basic assumption here consists in assuming that a pixel's curve of spectral response, as defined in the spectral space by the recorded digital numbers (DN's) at the available spectral bands, can be segmented and each segment can be replaced by a smaller number of statistics: mean and variance, describing the main characteristics of a pixel's spectral response. It is expected that this procedure can be accomplished without significant loss of information. The DN's at every spectral band are here used to calculate a few statistics that will then replace them in a classifier. For the pixel's spectral curve segmentation, we propose tree sub-optimal algorithms that are easy to implement and also computationally efficient. Using a top-down strategy, the length of the segments along the spectral curves can or not be adjusted sequentially. Experiments using a parametric classifier are performed on an AVIRIS data set. Encouraging results have been obtained in terms of classification accuracy and execution time, suggesting the effectiveness of the proposed algorithms. Palavras-chave: feature extraction, feature selection, data dimensionality reduction, hyperspectral image data, remote sensing, extracao de feicoes, selecao de feicoes, reducao da dimensionalidade, imagens hiperespectrais, sensoriamento remoto.

[1]  Philip H. Swain,et al.  Remote Sensing: The Quantitative Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Yu Hen Hu,et al.  Optimal linear spectral unmixing , 1999, IEEE Trans. Geosci. Remote. Sens..

[3]  Qiong Jackson,et al.  An adaptive classifier design for high-dimensional data analysis with a limited training data set , 2001, IEEE Trans. Geosci. Remote. Sens..

[4]  Chulhee Lee,et al.  Bayes error evaluation of the Gaussian ML classifier , 2000, IEEE Trans. Geosci. Remote. Sens..

[5]  Lorenzo Bruzzone,et al.  A technique for feature selection in multiclass problems , 2000 .

[6]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[7]  Olivier Y. de Vel,et al.  Comparative analysis of statistical pattern recognition methods in high dimensional settings , 1994, Pattern Recognit..

[8]  Victor Haertel,et al.  Experiments on feature extraction in remotely sensed hyperspectral image data , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Lorenzo Bruzzone,et al.  A new search algorithm for feature selection in hyperspectral remote sensing images , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Mauro Erbert Uso da análise discriminante regularizada (RDA) no reconhecimento de padrões em imagens digitais hiperespectral de sensoriamento remoto , 2001 .

[11]  David G. Stork,et al.  Pattern Classification , 1973 .

[12]  David A. Landgrebe,et al.  HYPERSPECTRAL DATA ANALYSIS AND FEATURE REDUCTION VIA PROJECTION PURSUIT , 1999 .

[13]  David A. Landgrebe,et al.  The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon , 1994, IEEE Trans. Geosci. Remote. Sens..

[14]  J. Friedman Regularized Discriminant Analysis , 1989 .

[15]  David A. Landgrebe,et al.  Covariance Matrix Estimation and Classification With Limited Training Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Gabriele Moser,et al.  Comparison of feature reduction techniques for classification of hyperspectral remote sensing data , 2003, SPIE Remote Sensing.

[17]  Luis O. Jimenez,et al.  Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, majority voting, and neural networks , 1999, IEEE Trans. Geosci. Remote. Sens..

[18]  C. W. Therrien,et al.  Decision, Estimation and Classification: An Introduction to Pattern Recognition and Related Topics , 1989 .

[19]  Lorenzo Bruzzone,et al.  An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection , 1995, IEEE Trans. Geosci. Remote. Sens..

[20]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[21]  David A. Landgrebe,et al.  Feature Extraction Based on Decision Boundaries , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  David A. Landgrebe,et al.  Decision boundary feature extraction for neural networks , 1997, IEEE Trans. Neural Networks.

[23]  Chein-I Chang,et al.  An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis , 2000, IEEE Trans. Inf. Theory.

[24]  Joydeep Ghosh,et al.  Best-bases feature extraction algorithms for classification of hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[25]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[26]  David A. Landgrebe,et al.  Analyzing high-dimensional multispectral data , 1993, IEEE Trans. Geosci. Remote. Sens..

[27]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  MANABU ICHINO,et al.  Optimum feature selection by zero-one integer programming , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  John A. Richards,et al.  Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[30]  Jack Sklansky,et al.  On Automatic Feature Selection , 1988, Int. J. Pattern Recognit. Artif. Intell..

[31]  Jon Atli Benediktsson,et al.  Classification of multisource and hyperspectral data based on decision fusion , 1999, IEEE Trans. Geosci. Remote. Sens..