Planetary Exploration Using CubeSat Deployed Sailplanes

Exploration of terrestrial planets such as Mars are conducted using orbiters, landers and rovers. Cameras and instruments onboard orbiters have enabled global mapping of Mars at low spatial resolution. Landers and rovers such as the Mars Science Laboratory (MSL) carry state-of-the-art instruments to characterize small localized areas. This leaves a critical gap in exploration capabilities: mapping regions in the hundreds of kilometers range. In this paper, we extend our work on CubeSat-sized sailplanes with detailed design studies of different aircraft configurations and payloads, identifying generalized design principles for autonomous sailplane-based surface reconnaissance and science applications. We further analyze potential wing deployment technologies, including conventional inflatables with hardened membranes, use of composite inflatables, and quick-setting foam. We perform detailed modeling of the Martian atmosphere and possible flight patterns at Jerezo crater using the Mars Regional Atmospheric Modeling System (MRAMS) to provide realistic atmospheric conditions at the landing site for NASA's 2020 rover. We revisit the feasibility of the Mars Sailplane concept, comparing it to previously proposed solutions, and identifying pathways to build laboratory prototypes for high-altitude Earth based testing. Finally, our work will analyze the implications of this technology for exploring other planetary bodies with atmospheres, including Venus and Titan.

[1]  M. Selig Summary of low speed airfoil data , 1995 .

[2]  Jekan Thangavelautham,et al.  Attitude Control of an Inflatable Sailplane for Mars Exploration , 2019, ArXiv.

[3]  J. R. French,et al.  The Mars airplane , 1986 .

[4]  Emanuele Baratti,et al.  Planetary Mapping for Landing Sites Selection: The Mars Case Study , 2019, Lecture Notes in Geoinformation and Cartography.

[5]  James Parle Preliminary Dynamic Soaring Research Using A Radio Control Glider , 2004 .

[6]  J. Gómez-Elvira,et al.  Gale surface wind characterization based on the Mars Science Laboratory REMS dataset. Part I: Wind retrieval and Gale's wind speeds and directions , 2019, Icarus.

[7]  R. Lewis,et al.  A Mars airplane , 1979 .

[8]  M. A. Ravine,et al.  ECAM, a Modular Spaceflight Imaging System - First Flight Deliveries , 2016 .

[9]  Michael S. Selig,et al.  Dynamic Soaring of Sailplanes over Open Fields , 2010 .

[10]  Michael J. Allen Updraft Model for Development of Autonomous Soaring Uninhabited Air Vehicles , 2006 .

[11]  Stephen R. Lewis,et al.  THE MARTIAN ATMOSPHERIC BOUNDARY LAYER , 2011 .

[12]  Gottfried Sachs,et al.  Flying at No Mechanical Energy Cost: Disclosing the Secret of Wandering Albatrosses , 2012, PloS one.

[13]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[14]  Jekan Thangavelautham,et al.  Inflatable antenna for CubeSat: A new spherical design for increased X-band gain , 2017, 2017 IEEE Aerospace Conference.

[15]  Tero Siili,et al.  The Martian slope winds and the nocturnal PBL jet. , 1993 .

[16]  Catherine Rio,et al.  A thermal plume model for the Martian convective boundary layer , 2013, 1306.6215.

[17]  P. Lissaman Wind Energy Extraction by Birds and Flight Vehicles , 2005 .

[18]  Shawn P. Ewald,et al.  Numerical simulation of Martian dust devils , 2003 .

[19]  Jamey Jacob,et al.  Design and flight testing of inflatable wings with wing warping , 2005 .

[20]  Karen Northon Mars Helicopter to Fly on NASA’s Next Red Planet Rover Mission , 2018 .

[21]  Hiroshi Ochi,et al.  Variable-Pressure Wind Tunnel Test of Airfoils at Low Reynolds Numbers Designed for Mars Exploration Aircraft , 2016 .

[22]  Nasreen. Dhanji Comparative Study of Aerial Platforms for Mars Exploration , 2007 .

[23]  Stephen R. Lewis,et al.  Structure and dynamics of the convective boundary layer on Mars as inferred from large‐eddy simulations and remote‐sensing measurements , 2010 .

[24]  Adrien Bouskela,et al.  Aerodynamic Design of Long-Range VTOL UAV , 2019, AIAA Scitech 2019 Forum.

[25]  Mark B. Boslough Autonomous Dynamic Soaring Platform for Distributed Mobile Sensor Arrays , 2002 .

[26]  Hiroshi Tokutake,et al.  Flight Stability of an Airplane on Mars , 2011 .

[27]  R. Rieder Concepts and Approaches for Mars Exploration , 2010 .

[28]  S. Squyres,et al.  Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit , 2006 .

[29]  Jack A. Jones Montgolfiere balloon missions from Mars and Titan , 2005 .

[30]  Christopher A. Kuhl Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (Ares) Mission Concept , 2013 .

[31]  Robert D. Braun,et al.  Design of the ARES Mars Airplane and Mission Architecture , 2006 .

[32]  J. J. Fielding Massiva: Mars Surface Sampling and Imaging VTOL Aircraft. , 2004 .

[33]  Daniel J. Edwards Implementation Details and Flight Test Results of an Autonomous Soaring Controller , 2008 .

[34]  David Mimoun,et al.  Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers , 2016, 1612.04308.

[35]  Akira Oyama,et al.  Planetary Atmosphere Wind Tunnel Tests on Aerodynamic Characteristics of a Mars Airplane Scale Model , 2014 .

[36]  Jekan Thangavelautham,et al.  Inflatable antenna for cubesat: Extension of the previously developed s-band design to the X-band , 2015 .