Reflectarray Design at Infrared Frequencies: Effects and Models of Material Loss

Reflectarray designs at infrared (IR) frequencies are investigated in this paper. At the short-wavelength region, material loss becomes an important consideration in reflectarray designs. Based on the measured properties of conductors and dielectrics at infrared frequency, this paper investigates the loss effects on the reflection magnitude and phase of reflectarray elements. It is revealed that when the material loss exceeds a certain limit, the element reflection phase will vary within a narrow phase range instead of a full 360° phase range. An equivalent circuit model is used to understand this phenomenon. Based on the investigation, alternative design methods for infrared reflectarrays are suggested to lower the loss effect. The low loss reflectarrays have great potential for infrared and visible range applications, such as a low profile planar concentrator for solar energy systems.

[1]  J. A. Zornoza,et al.  Three-layer printed reflectarrays for contoured beam space applications , 2004, IEEE Transactions on Antennas and Propagation.

[2]  David M. Pozar,et al.  A shaped-beam microstrip patch reflectarray , 1999 .

[3]  H. Ng,et al.  Dielectric Resonator Antennas , 2005 .

[4]  Kai Chang,et al.  An Offset Linear-Array-Fed Ku/Ka Dual-Band Reflectarray for Planet Cloud/Precipitation Radar , 2007, IEEE Transactions on Antennas and Propagation.

[5]  Bozzi,et al.  A figure of merit for losses in printed reflectarray elements , 2004, IEEE Antennas and Wireless Propagation Letters.

[6]  R. Pogorzelski,et al.  A Ka-band microstrip reflectarray with elements having variable rotation angles , 1998 .

[7]  Glenn D. Boreman,et al.  Infrared‐frequency coplanar striplines: Design, fabrication, and measurements , 2005 .

[8]  Jean-Jacques Greffet,et al.  Resonant optical antennas , 2013, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[9]  Peter Russer,et al.  Electromagnetics, Microwave Circuit, And Antenna Design for Communications Engineering, Second Edition (Artech House Antennas and Propagation Library) , 2006 .

[10]  Glenn D. Boreman,et al.  Characterization of microstrip transmission lines at IR frequencies—Modeling, fabrication and measurements , 2008 .

[11]  J. Alda Nano-antennas for optoelectronics and nanophotonics , 2006 .

[12]  T. Mandviwala Transmission Lines For Ir Signal Routing , 2006 .

[13]  James C. Ginn,et al.  Spectroscopic ellipsometry of materials for infrared micro‐device fabrication , 2008 .

[14]  K. Kao,et al.  Dielectric-fibre surface waveguides for optical frequencies , 1966 .

[15]  B.A. Lail,et al.  Infrared Patch Reflectarray , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[16]  Javier Alda,et al.  Uncertainty analysis in the measurement of the spatial responsivity of infrared antennas. , 2005, Applied optics.

[17]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[18]  Y. Rahmat-Samii,et al.  Dielectric and Conductor Loss Quantification for Microstrip Reflectarray: Simulations and Measurements , 2008, IEEE Transactions on Antennas and Propagation.

[19]  F. Cerrina,et al.  Handbook of Microlithography, Micromachining, and Microfabrication. Volume 1: Microlithography , 1997 .

[20]  K. Sarabandi,et al.  Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate , 2004, IEEE Transactions on Antennas and Propagation.

[21]  Radiation Analysis of Reflectarray Antennas : Array Theory Approach versus Aperture Field Approach , 2010 .

[22]  Jean-Jacques Greffet,et al.  Nanoantennas for Light Emission , 2005, Science.

[23]  G. Boreman,et al.  Phase Characterization of Reflectarray Elements at Infrared , 2007, IEEE Transactions on Antennas and Propagation.