Consequences of anion vacancy nearest‐neighbor hopping in III‐V compound semiconductors: Drift in InP metal‐insulator‐semiconductor field‐effect transistors

Diffusion experiments of Zn doped III‐V superlattice structures have given strong evidence that the hopping of anion vacancies to nearest‐neighbor sites, on the cation sublattice, is an important mode of atomic diffusion. A consequence of such hopping is the conversion of a donor state of the anion vacancy to multiple acceptor states of the cation vacancy‐antisite defect complex that results. When a device is switched from depletion to accumulation, such hopping allows the material to adjust its defect distribution to a new equilibrium in the presence of the field. We show that observations of drift in InP metal‐insulator‐semiconductor field effect transistors, MISFETs, are consistent with this origin.

[1]  K. Geib,et al.  Influence of interfacial structure on the electronic properties of SiO2/InP MISFET’s , 1984 .

[2]  E. A. Kraut,et al.  Heats of solution and substitution in semiconductors , 1984 .

[3]  J. V. Vechten,et al.  Effect of interfaces upon atomic diffusion: Si and Zn in GaAs , 1984 .

[4]  L. Meiners Electrical properties of Al2O3 and AlPxOy dielectric layers on InP , 1984 .

[5]  C. Wilmsen,et al.  New model for slow current drift in InP metal‐insulator‐semiconductor field‐effect transistors , 1984 .

[6]  L. Kimerling,et al.  Metastable M center in InP: Defect-charge-state-controlled structural relaxation , 1983 .

[7]  R. Kassing,et al.  Time‐dependent response of interface states in indium phosphide metal–insulator–semiconductor capacitors investigated with constant‐capacitance deep‐level transient spectroscopy , 1983 .

[8]  Carl W. Wilmsen,et al.  Native oxide formation and electrical instabilities at the insulator/InP interface , 1983 .

[9]  N. Holonyak,et al.  Impurity induced disordering of strained GaP‐GaAs1−xPx(x∼0.6) superlattices , 1983 .

[10]  J. V. Vechten,et al.  Intermixing of an AlAs‐GaAs superlattice by Zn diffusion , 1982 .

[11]  Ulrich Gösele,et al.  Diffusion of zinc in gallium arsenide: A new model , 1981 .

[12]  Karl Hess,et al.  Disorder of an AlAs‐GaAs superlattice by impurity diffusion , 1981 .

[13]  W. Bonner,et al.  Photoluminescence study of native defects in InP , 1981 .

[14]  Takeshi Kobayashi,et al.  Slow Current-Drift Mechanism in n-Channel Inversion Type InP-MISFET , 1980 .

[15]  Van Vechten Simple ballistic model for vacancy migration , 1975 .

[16]  J. V. Vechten,et al.  Divacancy binding enthalpy in semiconductors , 1975 .

[17]  J. V. Vechten,et al.  Simple Theoretical Estimates of the Schottky Constants and Virtual‐Enthalpies of Single Vacancy Formation in Zinc‐Blende and Wurtzite Type Semiconductors , 1975 .

[18]  L. L. Chang,et al.  Dependence of the Diffusion Coefficient on the Fermi Level: Zinc in Gallium Arsenide , 1967 .

[19]  B. Goldstein Diffusion in Compound Semiconductors , 1961 .

[20]  C. Zener Theory of Do for Atomic Diffusion in Metals , 1951 .

[21]  G. Gamow,et al.  Zur Quantentheorie des Atomkernes , 1928 .

[22]  D. L. Lile,et al.  The effect of interfacial traps on the stability of insulated gate devices on InP , 1983 .

[23]  K. Geib,et al.  Traps at the deposited insulator-InP interface— a discussion of a possible cause , 1983 .

[24]  K. Bachmann Properties, Preparation, and Device Applications of Indium Phosphide , 1981 .

[25]  A. Messiah Quantum Mechanics , 1961 .

[26]  L. Pauling The Nature Of The Chemical Bond , 1939 .