Topographical micro changes of corrugated board liners induced by heat treatment and their effect on flexographic print quality. In Advances in printing and media technology

Variable data will play a decisive role in the future of packaging and product promotion. Variable data printing (VDP) is a technique whereby certain information can be altered in an otherwise static layout with the help of a digital printing system, and in the packaging industry a wide range of applications is possible. Inkjet printing, due to its non-impact printing (NIP) principle, is the most suitable technology to use when applying variable data on packaging and to offer customized and even personalized prints for the industry and the end-consumer (van Daele, 2005). The aim of the work described in this thesis was to evaluate the practicability of attaining high quality variable data print (VDP) at high speed. The thesis is divided into three major parts. Part one focussed on the surface topography of corrugated board and applicable analytical methods to describe the printability of the substrate. In the second part the performance of inkjet on corrugated board liners printed at high speed was investigated and how to achieve maximum printing resolution. The final part of the thesis is devoted to a market survey of variable data printing on the North American and European markets. Part 1 concentrated on corrugated board as substrate and its pre-conditions regarding surface topography before the printing operation. Most critical for the quality are print defects such as mottling, gloss and stripiness, all of which occur in the printing of corrugated board. Stripiness is especially critical because it is one of the most disturbing print defects on corrugated board since it is periodical and more easily perceived than random print defects (Netz, 1996). Part 1 revealed that there is a difference in surface micro-roughness between the regions on the peak line of the fluting and the regions in the valley between two peaks of the corrugation which leads to glossy lines on the peak areas. The aim of the second part was to assess the practicability of attaining high quality VDP at high speed on a variety of liners for corrugated board production. The trial was conducted on a Kodak Versamark DP5240 press in Ornskoldsvik, Sweden, in cooperation with the Mid-Sweden University - Digital Printing Centre (DPC). Nine different substrates were printed at speeds between 0.5 and 5 m/s. The results revealed that the paper type rather than the printing speed has the greatest influence on the print quality. Speed, however, is the most important technical factor for inline implementation of inkjet. To obtain a picture of the industries’ view of variable data print on fibre-based packaging, a market survey was initiated and was addressed to people in the development, marketing and decision-making sectors of the packaging and printing industry, including manufacturers of machinery, producers of packaging and prints, and print buyers. The goal was to draw an overview map covering the people’s view of their market, trends in their fields and how they envision the future of VDP on fibre-based packaging. The conclusion was that inkjet technology has to prove itself first and to increase its technical capability, and the printing industry will then start investing more in this technology and in applications such as VDP.