Random Local SVMs for Classifying Large Datasets

We propose a new parallel ensemble learning algorithm of random local support vector machines, called krSVM for the effectively non-linear classification of large datasets. The random local SVM in the krSVM learning strategy uses kmeans algorithm to partition the data into k clusters, followed which it constructs a non-linear SVM in each cluster to classify the data locally in the parallel way on multi-core computers. The krSVM algorithm is faster than the standard SVM in the non-linear classification of large datasets while maintaining the classification correctness. The numerical test results on 4 datasets from UCI repository and 3 benchmarks of handwritten letters recognition showed that our proposed algorithm is efficient compared to the standard SVM.

[1]  François Poulet,et al.  Incremental SVM and Visualization Tools for Bio- medical Data Mining , 2003 .

[2]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[3]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[4]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[5]  Daniel Boley,et al.  Training Support Vector Machines Using Adaptive Clustering , 2004, SDM.

[6]  Jiawei Han,et al.  Clustered Support Vector Machines , 2013, AISTATS.

[7]  Laurens van der Maaten,et al.  A New Benchmark Dataset for Handwritten Character Recognition , 2009 .

[8]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[9]  David R. Musicant,et al.  Lagrangian Support Vector Machines , 2001, J. Mach. Learn. Res..

[10]  Yoram Singer,et al.  Pegasos: primal estimated sub-gradient solver for SVM , 2007, ICML '07.

[11]  Vojislav Kecman,et al.  Adaptive local hyperplane classification , 2008, Neurocomputing.

[12]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[13]  Philip H. S. Torr,et al.  Locally Linear Support Vector Machines , 2011, ICML.

[14]  Jiawei Han,et al.  Classifying large data sets using SVMs with hierarchical clusters , 2003, KDD '03.

[15]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[16]  François Poulet,et al.  Mining Very Large Datasets with Support Vector Machine Algorithms , 2003, ICEIS.

[17]  Glenn Fung,et al.  Incremental Support Vector Machine Classification , 2002, SDM.

[18]  Léon Bottou,et al.  Local Learning Algorithms , 1992, Neural Computation.

[19]  François Poulet,et al.  Mining Very Large Datasets with SVM and Visualization , 2005, ICEIS.

[20]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[21]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[22]  François Poulet,et al.  Classifying one billion data with a new distributed svm algorithm , 2006, 2006 International Conference onResearch, Innovation and Vision for the Future.

[23]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[24]  Federico Girosi,et al.  An improved training algorithm for support vector machines , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[25]  Jianchang Mao,et al.  Scaling-up support vector machines using boosting algorithm , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[26]  Vojislav Kecman,et al.  Locally linear support vector machines and other local models , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[27]  Somnath Banerjee Boosting inductive transfer for text classification using wikipedia , 2007, ICMLA 2007.

[28]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[29]  Jean-Daniel Fekete,et al.  Large Scale Classification with Support Vector Machine Algorithms , 2007, ICMLA 2007.

[30]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[31]  Pascal Vincent,et al.  K-Local Hyperplane and Convex Distance Nearest Neighbor Algorithms , 2001, NIPS.

[32]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[33]  Thanh-Nghi Do,et al.  Non-linear Classification of Massive Datasets with a Parallel Algorithm of Local Support Vector Machines , 2015, ICCSAMA.

[34]  Léon Bottou,et al.  Local Algorithms for Pattern Recognition and Dependencies Estimation , 1993, Neural Computation.

[35]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[36]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[37]  Glenn Fung,et al.  Proximal support vector machine classifiers , 2001, KDD '01.

[38]  Thanh-Nghi Do,et al.  Parallel multiclass stochastic gradient descent algorithms for classifying million images with very-high-dimensional signatures into thousands classes , 2014, Vietnam Journal of Computer Science.

[39]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[40]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[41]  François Poulet,et al.  Speed Up SVM Algorithm for Massive Classification Tasks , 2008, ADMA.

[42]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[43]  Léon Bottou,et al.  The Tradeoffs of Large Scale Learning , 2007, NIPS.

[44]  François Poulet,et al.  Towards High Dimensional Data Mining with Boosting of PSVM and Visualization Tools , 2004, ICEIS.

[45]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[46]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[47]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[48]  Rong Jin,et al.  Efficient Algorithm for Localized Support Vector Machine , 2010, IEEE Transactions on Knowledge and Data Engineering.

[49]  Enrico Blanzieri,et al.  Fast and Scalable Local Kernel Machines , 2010, J. Mach. Learn. Res..

[50]  Vladimir Vapnik,et al.  Principles of Risk Minimization for Learning Theory , 1991, NIPS.

[51]  Daphne Koller,et al.  Support Vector Machine Active Learning with Application sto Text Classification , 2000, ICML.