Review of Design Routines of MXene Materials for Magnesium-Ion Energy Storage Device.

Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High-power density supercapacitors and high-energy density rechargeable batteries are some of the most effective devices, while lithium-ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium-ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene-based composites in various kinds of magnesium-ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research.

[1]  Qifeng Lin,et al.  Layered double hydroxides as electrode materials for flexible energy storage devices , 2023, Journal of Semiconductors.

[2]  Zhongwei Chen,et al.  Boosting the Alkali Metal Ions Storage Performance of Layered Nb2c with a Molecular Welding Strategy , 2022, SSRN Electronic Journal.

[3]  Junming Cao,et al.  TiVCTx MXene/Chalcogenide Heterostructure-Based High-Performance Magnesium-Ion Battery as Flexible Integrated Units. , 2022, Small.

[4]  Tolendra Kshetri,et al.  Fibrous Asymmetric Supercapacitor Based on Wet Spun MXene/PAN Fiber-derived Multichannel Porous MXene/CF Negatrode and NiCo2S4 Electrodeposited MXene/CF Positrode , 2022, Chemical Engineering Journal.

[5]  Oliver G. Schmidt,et al.  Flexible MXene films for batteries and beyond , 2022, Carbon Energy.

[6]  D. Papageorgiou,et al.  Enhanced interfacial properties of hierarchical MXene/CF composites via low content electrophoretic deposition , 2022, Composites Part B: Engineering.

[7]  Junzhi Li,et al.  MXene/ZIF-67/PAN Nanofiber Film for Ultra-sensitive Pressure Sensors. , 2022, ACS applied materials & interfaces.

[8]  Yunfeng Zhu,et al.  VS4 anchored on Ti3C2 MXene as a high-performance cathode material for magnesium ion battery , 2022, Journal of Power Sources.

[9]  M. Katiyar,et al.  Effect of Aqueous Electrolytes on the Performance of a Ti3C2Tx (MXene)−δ-MnO2 Asymmetric Supercapacitor , 2021, Energy & Fuels.

[10]  Qianqian Wang,et al.  3D Macroporous Oxidation‐Resistant Ti3C2Tx MXene Hybrid Hydrogels for Enhanced Supercapacitive Performances with Ultralong Cycle Life , 2021, Advanced Functional Materials.

[11]  Haosen Fan,et al.  2D-2D MXene/ReS2 hybrid from Ti3C2Tx MXene conductive layers supporting ultrathin ReS2 nanosheets for superior sodium storage , 2021, Chemical Engineering Journal.

[12]  Hao Xu,et al.  Nanoconfined and in Situ Catalyzed MgH2 Self-Assembled on 3D Ti3C2 MXene Folded Nanosheets with Enhanced Hydrogen Sorption Performances. , 2021, ACS nano.

[13]  Lili Wang,et al.  Self-assembled Cobalt-doped NiMn-Layered double hydroxide (LDH)/V2CT MXene hybrids for advanced aqueous electrochemical energy storage properties , 2021, Chemical Engineering Journal.

[14]  Liping Zhao,et al.  Anti-oxidized electrostatic self-assembly of 3D high-density Polyimide@MXene composite for superior aqueous Mg2+ storage , 2021 .

[15]  H. Du,et al.  MOF-Derived ZnS Nanodots/Ti3C2Tx MXene Hybrids Boosting Superior Lithium Storage Performance , 2021, Nano-micro letters.

[16]  Yu-Xia Hu,et al.  Diacid Molecules Welding Achieved Self-Adaption Layered Structure Ti3C2 MXene toward Fast and Stable Lithium-Ion Storage , 2021, ACS Sustainable Chemistry & Engineering.

[17]  L. Kong,et al.  Regulating Interlayer Spacing with Pillar- and Strain-Structures in Ti3C2 MXene Layers by Molecular Welding for Superior Alkali-Metal Ions Storage , 2021, Materials Today Energy.

[18]  Segi Byun,et al.  High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors , 2021 .

[19]  Xu Gao,et al.  Amine-Assisted Delaminated 2D Ti3C2Tx MXenes for High Specific Capacitance in Neutral Aqueous Electrolytes. , 2021, ACS applied materials & interfaces.

[20]  X. Zang,et al.  Ultrathin Carbon Deficient Molybdenum Carbide (α-MoC1-x) Enables High-Rate Mg-Ion-based Energy Storage. , 2021, The journal of physical chemistry letters.

[21]  Ziqi Sun,et al.  Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage , 2021, Nano-Micro Letters.

[22]  Lili Wang,et al.  Assembling Co3O4 Nanoparticles into MXene with Enhanced electrochemical performance for advanced asymmetric supercapacitors. , 2021, Journal of colloid and interface science.

[23]  G. Shen,et al.  Controlled Assembly of MXene Nanosheets as an Electrode and Active Layer for High‐Performance Electronic Skin , 2021, Advanced Functional Materials.

[24]  K. Wiik,et al.  Performance Study of MXene/Carbon Nanotube Composites for Current Collector‐ and Binder‐Free Mg–S Batteries , 2021, ChemSusChem.

[25]  W. Ding,et al.  Turning Trash into Treasure: MXene with Intrinsic LiF Solid Electrolyte Interfaces Performs Better and Better during Battery Cycling , 2021, Advanced Materials Technologies.

[26]  Ziqi Sun,et al.  Microbe-Assisted Assembly of Ti3C2Tx MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage. , 2021, ACS nano.

[27]  Yunfeng Zhu,et al.  NiSe2/Ti3C2 as a promising cathode material for rechargeable dual Mg/Li-ion battery , 2021 .

[28]  F. Pan,et al.  Optimizing Ion Pathway in Titanium Carbide MXene for Practical High‐Rate Supercapacitor , 2020, Advanced Energy Materials.

[29]  Q. Fu,et al.  Hierarchical porous "skin/skeleton"-like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors. , 2020, Journal of hazardous materials.

[30]  Xiaohui Hu,et al.  3D interwoven MXene networks fabricated by the assistance of bacterial celluloses as high-performance cathode material for rechargeable magnesium battery , 2020 .

[31]  Daofeng Sun,et al.  Recent progress in metal-organic framework-based supercapacitor electrode materials , 2020, Coordination Chemistry Reviews.

[32]  B. Anasori,et al.  Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides , 2020, MRS Bulletin.

[33]  C. Zhi,et al.  Vertically Aligned Sn4+ Preintercalated Ti2CTX MXene Sphere with Enhanced Zn Ion Transportation and Superior Cycle Lifespan , 2020, Advanced Energy Materials.

[34]  Po‐Yen Chen,et al.  Intercalation of Metal Ions into Ti3C2Tx MXene Electrodes for High‐Areal‐Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes , 2020, Advanced Functional Materials.

[35]  P. Simon,et al.  Modifications of MXene layers for supercapacitors , 2020, Nano Energy.

[36]  S. H. Lee,et al.  Large-scale wet-spinning of highly electroconductive MXene fibers , 2020, Nature Communications.

[37]  K. Liao,et al.  Tensile behaviors of Ti3C2Tx (MXene) films , 2020, Nanotechnology.

[38]  Wenguang Zhao,et al.  Ice-Templated MXene/Ag-Epoxy Nanocomposites as High-Performance Thermal Management Materials. , 2020, ACS applied materials & interfaces.

[39]  J. Park,et al.  Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. , 2020, ACS applied materials & interfaces.

[40]  G. Brennecka,et al.  Synthesis and Surface Chemistry of 2D TiVC Solid-Solution MXenes. , 2020, ACS applied materials & interfaces.

[41]  Qiang Zhang,et al.  Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry , 2020 .

[42]  Y. Gogotsi,et al.  Electrochemical Activation of 2D MXene‐Based Hybrid for High Volumetric Mg‐Ion Storage Capacitance , 2020, Batteries & Supercaps.

[43]  Zhiyu Wang,et al.  Additive-Free MXene Liquid Crystals and Fibers , 2020, ACS central science.

[44]  Qinghua Zhang,et al.  Facile fabrication of flexible rGO/MXene hybrid fiber-like electrode with high volumetric capacitance , 2020 .

[45]  Yongchang Liu,et al.  Prelithiated V2 C MXene: A High-Performance Electrode for Hybrid Magnesium/Lithium-Ion Batteries by Ion Cointercalation. , 2020, Small.

[46]  Nathan C Frey,et al.  Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with 5 Atomic Layers of Transition Metals. , 2019, ACS nano.

[47]  Yuan Li Study on MXene-supported Layered TiS2 as Cathode Materials for Magnesium Batteries , 2019, International Journal of Electrochemical Science.

[48]  Peng Zhang,et al.  Flexible 3D Porous MXene Foam for High-Performance Lithium-Ion Batteries. , 2019, Small.

[49]  F. Pan,et al.  Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable in situ Anodic Oxidation. , 2019, Angewandte Chemie.

[50]  Majid Beidaghi,et al.  Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose , 2019, Advanced materials.

[51]  Lu Han,et al.  Microstructure Characteristics of Cathode Materials for Rechargeable Magnesium Batteries. , 2019, Small.

[52]  Guoxiu Wang,et al.  Nanoengineering of 2D MXene-Based Materials for Energy Storage Applications. , 2019, Small.

[53]  Q. Yan,et al.  Surface Modified MXene-Based Nanocomposites for Electrochemical Energy Conversion and Storage. , 2019, Small.

[54]  Yang Gao,et al.  Highly Stretchable and Self‐Healable MXene/Polyvinyl Alcohol Hydrogel Electrode for Wearable Capacitive Electronic Skin , 2019, Advanced Electronic Materials.

[55]  Abdoulaye Djire,et al.  Pseudocapacitive Storage in Nanolayered Ti2NTx MXene Using Mg-Ion Electrolyte , 2019, ACS Applied Nano Materials.

[56]  Chang E. Ren,et al.  Magnesium-Ion Storage Capability of MXenes , 2019, ACS Applied Energy Materials.

[57]  M. Fichtner,et al.  Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective , 2019, Front. Chem..

[58]  F. Du,et al.  Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes , 2018, Electrochemistry Communications.

[59]  Hao‐Bin Zhang,et al.  Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels. , 2018, Small.

[60]  Yang-Kook Sun,et al.  Recent Progress in Rechargeable Potassium Batteries , 2018, Advanced Functional Materials.

[61]  Jiaqi Huang,et al.  A Review of Advanced Energy Materials for Magnesium–Sulfur Batteries , 2018, Energy & Environmental Materials.

[62]  H. Fan,et al.  Recent Advances in Zn‐Ion Batteries , 2018, Advanced Functional Materials.

[63]  Xingbin Yan,et al.  Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries , 2018, Chinese Chemical Letters.

[64]  Aobing Du,et al.  Rechargeable Magnesium Batteries using Conversion-Type Cathodes: A Perspective and Minireview , 2018, Small Methods.

[65]  Yongchang Liu,et al.  Approaching the Downsizing Limit of Maricite NaFePO4 toward High‐Performance Cathode for Sodium‐Ion Batteries , 2018 .

[66]  J. Yu,et al.  High-performance pouch-type hybrid supercapacitor based on hierarchical NiO-Co3O4-NiO composite nanoarchitectures as an advanced electrode material , 2018, Nano Energy.

[67]  Yury Gogotsi,et al.  Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes , 2018, Nature.

[68]  Yihua Gao,et al.  3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. , 2018, ACS nano.

[69]  Shi-gang Lu,et al.  Recent Advances in Layered Ti3 C2 Tx MXene for Electrochemical Energy Storage. , 2018, Small.

[70]  S. Shi,et al.  Opening Magnesium Storage Capability of Two-Dimensional MXene by Intercalation of Cationic Surfactant. , 2018, ACS nano.

[71]  Atsuo Yamada,et al.  MXene as a Charge Storage Host. , 2018, Accounts of chemical research.

[72]  Y. Gogotsi,et al.  Understanding the MXene Pseudocapacitance. , 2018, The journal of physical chemistry letters.

[73]  H. Yamane,et al.  Melt electrospinning: Electrodynamics and spinnability , 2017 .

[74]  Kang Xu,et al.  Reversible S0 /MgSx Redox Chemistry in a MgTFSI2 /MgCl2 /DME Electrolyte for Rechargeable Mg/S Batteries. , 2017, Angewandte Chemie.

[75]  Yury Gogotsi,et al.  Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na‐Ion Storage , 2017, Advanced materials.

[76]  K. Mahmoud,et al.  Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T = F, O and OH) MXene , 2017 .

[77]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[78]  Igor Krupa,et al.  2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties , 2017, PloS one.

[79]  L. Mai,et al.  H2V3O8 Nanowires as High-Capacity Cathode Materials for Magnesium-Based Battery. , 2017, ACS applied materials & interfaces.

[80]  Yury Gogotsi,et al.  Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance , 2017 .

[81]  L. Dai,et al.  Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors , 2017 .

[82]  Pierre-Louis Taberna,et al.  Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides , 2017, Nature Energy.

[83]  Dashuai Wang,et al.  First-Principles Calculations of Ti2N and Ti2NT2 (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond , 2017 .

[84]  Chao Li,et al.  Asymmetric Supercapacitor Electrodes and Devices , 2017, Advanced materials.

[85]  Reva M. Street,et al.  Preparation and characterization of polymer-Ti3C2Tx (MXene) composite nanofibers produced via electrospinning , 2017 .

[86]  Sang-Hoon Park,et al.  Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes) , 2017 .

[87]  M. Barsoum,et al.  Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering , 2017, Nature Communications.

[88]  Yury Gogotsi,et al.  High-Throughput Survey of Ordering Configurations in MXene Alloys Across Compositions and Temperatures. , 2017, ACS nano.

[89]  Y. Gogotsi,et al.  Dispersions of Two-Dimensional Titanium Carbide MXene in Organic Solvents , 2017 .

[90]  Chang E. Ren,et al.  Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[91]  J. Caro,et al.  A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. , 2017, Angewandte Chemie.

[92]  Xiaodong Zhuang,et al.  Flexible All‐Solid‐State Supercapacitors with High Volumetric Capacitances Boosted by Solution Processable MXene and Electrochemically Exfoliated Graphene , 2017 .

[93]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[94]  Yi Tang,et al.  Enhanced supercapacitive performance of manganese oxides doped two-dimensional titanium carbide nanocomposite in alkaline electrolyte , 2016 .

[95]  S. Passerini,et al.  Two-Dimensional Titanium Carbide/RGO Composite for High-Performance Supercapacitors. , 2016, ACS applied materials & interfaces.

[96]  Decai Huang,et al.  Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets , 2016 .

[97]  Jagjit Nanda,et al.  Synthesis and Characterization of 2D Molybdenum Carbide (MXene) , 2016 .

[98]  Jiulin Wang,et al.  A High-Performance Rechargeable Mg(2+)/Li(+) Hybrid Battery Using One-Dimensional Mesoporous TiO2(B) Nanoflakes as the Cathode. , 2016, ACS applied materials & interfaces.

[99]  Qinghua Wu,et al.  Structural Transformation of MXene (V2C, Cr2C, and Ta2C) with O Groups during Lithiation: A First-Principles Investigation. , 2016, ACS applied materials & interfaces.

[100]  Yury Gogotsi,et al.  Resolving the Structure of Ti3C2Tx MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function , 2016 .

[101]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[102]  H. Alshareef,et al.  Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of Ti2CTx MXene Electrodes for Supercapacitor Applications , 2015 .

[103]  Z. Fu,et al.  Hybrid system for rechargeable magnesium battery with high energy density , 2015, Scientific Reports.

[104]  Yury Gogotsi,et al.  Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes) , 2015, Nanotechnology.

[105]  Yury Gogotsi,et al.  Amine‐Assisted Delamination of Nb2C MXene for Li‐Ion Energy Storage Devices , 2015, Advanced materials.

[106]  Yan Yao,et al.  High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage. , 2015, ACS applied materials & interfaces.

[107]  M. Fichtner,et al.  Performance Improvement of Magnesium Sulfur Batteries with Modified Non‐Nucleophilic Electrolytes , 2015 .

[108]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[109]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[110]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[111]  Muratahan Aykol,et al.  Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. , 2014, Journal of the American Chemical Society.

[112]  A. Manivannan,et al.  Rechargeable Magnesium Battery: Current Status and Key Challenges for the Future , 2014 .

[113]  Qin Yang,et al.  Study of PEDOT–PSS in carbon nanotube/conducting polymer composites as supercapacitor electrodes in aqueous solution , 2014 .

[114]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[115]  Xinyu Wang,et al.  Additive-Driven Self-Assembly of Well Ordered Mesoporous Carbon/Iron Oxide Nanoparticle Composites for Supercapacitors , 2014 .

[116]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[117]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[118]  Ziqi Tan,et al.  Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes , 2013 .

[119]  Yoshiyuki Kawazoe,et al.  Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides , 2013 .

[120]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[121]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[122]  Allen G. Oliver,et al.  Electrolyte roadblocks to a magnesium rechargeable battery , 2012 .

[123]  J. Fransaer,et al.  Performance of SLS/MWCNTs/PANI capacitor electrodes in a physiological electrolyte and in serum. , 2012, Chemical communications.

[124]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[125]  Daehwan Cho,et al.  Structural studies of electrospun nylon 6 fibers from solution and melt , 2011 .

[126]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[127]  Allen G. Oliver,et al.  Structure and compatibility of a magnesium electrolyte with a sulphur cathode , 2011, Nature communications.

[128]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[129]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[130]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[131]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[132]  Yury Gogotsi,et al.  Nanodiamond-polymer composite fibers and coatings. , 2009, ACS nano.

[133]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[134]  D. Aurbach,et al.  Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries , 2008 .

[135]  Jingsong Huang,et al.  Theoretical model for nanoporous carbon supercapacitors. , 2008, Angewandte Chemie.

[136]  Martin Möller,et al.  Electrospinning of polymer melts: Phenomenological observations , 2007 .

[137]  H. Fong,et al.  Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon 6 Nanofibers. , 2007, Macromolecules.

[138]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[139]  Younan Xia,et al.  Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. , 2006, Nano letters.

[140]  T. B. Green,et al.  The thermal effects on electrospinning of polylactic acid melts , 2006 .

[141]  A. Lewandowski,et al.  Ionic liquids as electrolytes , 2006 .

[142]  D. Aurbach,et al.  Improved Electrolyte Solutions for Rechargeable Magnesium Batteries , 2006 .

[143]  Chi-Chang Hu,et al.  Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors , 2005 .

[144]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[145]  Frank Ko,et al.  Melt-electrospinning. part I: processing parameters and geometric properties , 2004 .

[146]  J. Fischer,et al.  Coagulation method for preparing single‐walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability , 2003 .

[147]  Karen E. Swider-Lyons,et al.  Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering , 2002 .

[148]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[149]  John B. Goodenough,et al.  Supercapacitor Behavior with KCl Electrolyte , 1999 .

[150]  L. P. Lossius,et al.  Plating of magnesium from organic solvents , 1996 .

[151]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[152]  T. Gregory,et al.  Nonaqueous Electrochemistry of Magnesium Applications to Energy Storage , 1990 .

[153]  R. Pearson Hard and soft acids and bases, HSAB, part 1: Fundamental principles , 1968 .

[154]  Li-zhen Fan,et al.  High-performance heterojunction Ti3C2/CoSe2 with both intercalation and conversion storage mechanisms for magnesium batteries , 2021 .

[155]  Haidong Yu,et al.  A MXene-functionalized paper-based electrochemical immunosensor for label-free detection of cardiac troponin I , 2021, Journal of Semiconductors.

[156]  Yury Gogotsi,et al.  Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance , 2015, Advanced materials.

[157]  Majid Beidaghi,et al.  Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz‐Crystal Admittance and In Situ Electronic Conductance Measurements , 2015 .

[158]  Y. Meng,et al.  A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte , 2012 .

[159]  R. Laine,et al.  Rational design of high concentration electrolytes and MXene-based sulfur host materials toward high-performance magnesium sulfur batteries , 2022 .