Heterocyclic amino acid molecule as a multifunctional interfacial bridge for improving the efficiency and stability of quadruple cation perovskite solar cells

[1]  Wen-Hau Zhang,et al.  Ion Compensation of Buried Interface Enables Highly Efficient and Stable Inverted MA‐Free Perovskite Solar Cells , 2022, Advanced Functional Materials.

[2]  Yixin Zhao,et al.  Zwitterion‐Functionalized SnO2 Substrate Induced Sequential Deposition of Black‐Phase FAPbI3 with Rearranged PbI2 Residue , 2022, Advanced materials.

[3]  Yang Liu,et al.  Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules , 2022, Nature Nanotechnology.

[4]  Zhike Liu,et al.  Record‐Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation , 2022, Advanced materials.

[5]  K. Zhu,et al.  Advances in SnO2 for Efficient and Stable n–i–p Perovskite Solar Cells , 2022, Advanced materials.

[6]  Dongqin Bi,et al.  Molecularly Tailored SnO2/Perovskite Interface Enabling Efficient and Stable FAPbI3 Solar Cells , 2022, ACS Energy Letters.

[7]  Qi Wang,et al.  Stable Perovskite Solar Cells with 25.17% Efficiency Enabled by Improving Crystallization and Passivating Defect Synergistically , 2022, Energy & Environmental Science.

[8]  Kwang Soo Kim,et al.  Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes , 2021, Nature.

[9]  Dong Hoe Kim,et al.  Formamidine disulfide oxidant as a localised electron scavenger for >20% perovskite solar cell modules , 2021, Energy & Environmental Science.

[10]  Peng Wu,et al.  Advances in SnO2-based perovskite solar cells: from preparation to photovoltaic applications , 2021, Journal of Materials Chemistry A.

[11]  Wen-Hau Zhang,et al.  Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells , 2021, Energy & Environmental Science.

[12]  X. Ren,et al.  Antisolvent‐ and Annealing‐Free Deposition for Highly Stable Efficient Perovskite Solar Cells via Modified ZnO , 2021, Advanced science.

[13]  S. Cao,et al.  Rubidium Fluoride Modified SnO2 for Planar n‐i‐p Perovskite Solar Cells , 2021, Advanced Functional Materials.

[14]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[15]  Wen-Hau Zhang,et al.  Defect mitigation using d-penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability , 2020, Chemical science.

[16]  Chun‐Sing Lee,et al.  Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells , 2020 .

[17]  Q. Gong,et al.  Superior Carrier Lifetimes Exceeding 6 µs in Polycrystalline Halide Perovskites , 2020, Advanced materials.

[18]  Andrew H. Proppe,et al.  Bifunctional Surface Engineering on SnO2 Reduces Energy Loss in Perovskite Solar Cells , 2020 .

[19]  B. Bahrami,et al.  High-Efficiency Perovskite Solar Cells Enabled by Anatase TiO2 Nanopyramid Arrays with Oriented Electric Field. , 2020, Angewandte Chemie.

[20]  Jae Kwan Lee,et al.  Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor , 2020, RSC advances.

[21]  Ruixiang Peng,et al.  Synergistic Interface Energy Band Alignment Optimization and Defect Passivation toward Efficient and Simple‐Structured Perovskite Solar Cell , 2020, Advanced science.

[22]  Miaoran Zhang,et al.  Red‐Carbon‐Quantum‐Dot‐Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells , 2019, Advanced materials.

[23]  Liang Li,et al.  Coagulated SnO2 Colloids for High Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability. , 2019, Angewandte Chemie.

[24]  Ruixia Yang,et al.  Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. , 2019, Nano letters.

[25]  Wen-Hau Zhang,et al.  Solution‐Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges , 2019, Advanced Functional Materials.

[26]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[27]  Tae Joo Shin,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[28]  Jinsong Huang,et al.  Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. , 2019, Journal of the American Chemical Society.

[29]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[30]  Wen-Hau Zhang,et al.  Highly crystalline Nb-doped TiO2 nanospindles as superior electron transporting materials for high-performance planar structured perovskite solar cells , 2018, RSC advances.

[31]  T. Bein,et al.  Understanding the Role of Cesium and Rubidium Additives in Perovskite Solar Cells: Trap States, Charge Transport, and Recombination , 2018 .

[32]  Jay B. Patel,et al.  Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process , 2018, Nature Communications.

[33]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[34]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[35]  Bo Chen,et al.  Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations , 2017, Nature Energy.

[36]  L. Quan,et al.  Efficient and stable solution-processed planar perovskite solar cells via contact passivation , 2017, Science.

[37]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[38]  Ruixia Yang,et al.  Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells , 2016 .

[39]  G. Konstantatos,et al.  Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals , 2016, Nature Photonics.

[40]  Nam-Gyu Park,et al.  Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. , 2016, Accounts of chemical research.

[41]  Xu Pan,et al.  Mesoporous BaSnO3 layer based perovskite solar cells. , 2016, Chemical communications.

[42]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[43]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[44]  H. Snaith,et al.  SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. , 2010, Nano letters.

[45]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[46]  M. Devillers,et al.  Bismuth derivatives of 2,3-dicarboxypyrazine and 3,5-dicarboxypyrazole as precursors for bismuth oxide based materials , 1998 .

[47]  Albert Rose,et al.  Double Extraction of Uniformly Generated Electron‐Hole Pairs from Insulators with Noninjecting Contacts , 1971 .

[48]  R. Bube Trap Density Determination by Space‐Charge‐Limited Currents , 1962 .