Metrics for Generalized Persistence Modules

We consider the question of defining interleaving metrics on generalized persistence modules over arbitrary preordered sets. Our constructions are functorial, which implies a form of stability for these metrics. We describe a large class of examples, inverse-image persistence modules, which occur whenever a topological space is mapped to a metric space. Several standard theories of persistence and their stability can be described in this framework. This includes the classical case of sublevelset persistent homology. We introduce a distinction between ‘soft’ and ‘hard’ stability theorems. While our treatment is direct and elementary, the approach can be explained abstractly in terms of monoidal functors.

[1]  Peter Bubenik,et al.  Categorification of Persistent Homology , 2012, Discret. Comput. Geom..

[2]  David Cohen-Steiner,et al.  Persistent homology for kernels, images, and cokernels , 2009, SODA.

[3]  Michael Lesnick,et al.  The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..

[4]  Michael Lesnick,et al.  The Optimality of the Interleaving Distance on Multidimensional Persistence Modules , 2011, ArXiv.

[5]  J. Curry Sheaves, Cosheaves and Applications , 2013, 1303.3255.

[6]  Dmitriy Morozov,et al.  Zigzag persistent homology and real-valued functions , 2009, SCG '09.

[7]  Dan Burghelea,et al.  Topology of angle valued maps, bar codes and Jordan blocks , 2013, J. Appl. Comput. Topol..

[8]  Daniela Giorgi,et al.  Multidimensional Size Functions for Shape Comparison , 2008, Journal of Mathematical Imaging and Vision.

[9]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[10]  Herbert Edelsbrunner,et al.  Homology and Robustness of Level and Interlevel Sets , 2011, ArXiv.

[11]  Tamal K. Dey,et al.  Topological Persistence for Circle-Valued Maps , 2013, Discret. Comput. Geom..

[12]  Patrizio Frosini,et al.  Stable Comparison of Multidimensional Persistent Homology Groups with Torsion , 2010, ArXiv.

[13]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[14]  David Cohen-Steiner,et al.  Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..

[15]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[16]  Gunther H. Weber,et al.  Interleaving Distance between Merge Trees , 2013 .

[17]  Gunnar E. Carlsson,et al.  Zigzag Persistence , 2008, Found. Comput. Math..

[18]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[19]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[20]  Bernd Hamann,et al.  Measuring the Distance Between Merge Trees , 2014, Topological Methods in Data Analysis and Visualization.

[21]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[22]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.