Quantum Pushdown Automata

Quantum automata are mathematical models for quantum computing. We analyze the existing quantum pushdown automata, propose a q quantum pushdown automata (qQPDA), and partially clarify their connections. We emphasize some advantages of our qQPDA over others. We demonstrate the equivalence between qQPDA and another QPDA. We indicate that qQPDA are at least as powerful as the QPDA of Moore and Crutchfield with accepting words by empty stack. We introduce the quantum languages accepted by qQPDA and prove that every η-q quantum context-free language is also an η′-q quantum context-free language for any η ∈ (0, 1) and η′ ∈ (0, 1).

[1]  R. Feynman Quantum mechanical computers , 1986 .

[2]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[3]  Azaria Paz,et al.  Introduction to Probabilistic Automata , 1971 .

[4]  Marats Golovkins,et al.  Quantum Pushdown Automata , 2000, SOFSEM.

[5]  Mitsunori Ogihara,et al.  Properties of Probabilistic Pushdown Automata , 1994, Theor. Comput. Sci..

[6]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[7]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[8]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[9]  Stanley Gudder,et al.  Quantum Automata: An Overview , 1999 .

[10]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[11]  Daowen Qiu,et al.  Characterization of Sequential Quantum Machines , 2002 .

[12]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[13]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[14]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[15]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[16]  S. Braunstein,et al.  Impossibility of deleting an unknown quantum state , 2000, Nature.

[17]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.