暂无分享,去创建一个
[1] Henry B. Mann,et al. On linear relations between roots of unity , 1965 .
[2] Kazuyuki Amano,et al. Representation of Quantum Circuits with Clifford and $\pi/8$ Gates , 2008, 0806.3834.
[3] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .
[4] Simon Perdrix,et al. A Simplified Stabilizer ZX-calculus , 2016, QPL.
[5] Miriam Backens,et al. Making the stabilizer ZX-calculus complete for scalars , 2015, 1507.03854.
[6] A. L. Onishchik,et al. Lie groups and algebraic groups , 1990 .
[7] Simon Perdrix,et al. ZX-Calculus: Cyclotomic Supplementarity and Incompleteness for Clifford+T Quantum Mechanics , 2017, MFCS.
[8] Simon Perdrix,et al. Supplementarity is Necessary for Quantum Diagram Reasoning , 2015, MFCS.
[9] Simon Perdrix,et al. A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics , 2017, LICS.
[10] Miriam Backens,et al. The ZX-calculus is complete for the single-qubit Clifford+T group , 2014, QPL.
[11] Simon Perdrix,et al. Diagrammatic Reasoning beyond Clifford+T Quantum Mechanics , 2018, LICS.
[12] Quanlong Wang,et al. Two complete axiomatisations of pure-state qubit quantum computing , 2018, LICS.
[13] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[14] J. Conway,et al. Trigonometric diophantine equations (On vanishing sums of roots of unity) , 1976 .
[15] Amar Hadzihasanovic,et al. A Diagrammatic Axiomatisation for Qubit Entanglement , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.
[16] Michel Laurent,et al. Equations diophantiennes exponentielles , 1984 .