Processing of Human Reduction Mammoplasty and Mastectomy Tissues for Cell Culture

Experimental examination of normal human mammary epithelial cell (HMEC) behavior, and how normal cells acquire abnormal properties, can be facilitated by in vitro culture systems that more accurately model in vivo biology. The use of human derived material for studying cellular differentiation, aging, senescence, and immortalization is particularly advantageous given the many significant molecular differences in these properties between human and commonly utilized rodent cells1-2. Mammary cells present a convenient model system because large quantities of normal and abnormal tissues are available due to the frequency of reduction mammoplasty and mastectomy surgeries. The mammary gland consists of a complex admixture of many distinct cell types, e.g., epithelial, adipose, mesenchymal, endothelial. The epithelial cells are responsible for the differentiated mammary function of lactation, and are also the origin of the vast majority of human breast cancers. We have developed methods to process mammary gland surgical discard tissues into pure epithelial components as well as mesenchymal cells3. The processed material can be stored frozen indefinitely, or initiated into primary culture. Surgical discard material is transported to the laboratory and manually dissected to enrich for epithelial containing tissue. Subsequent digestion of the dissected tissue using collagenase and hyaluronidase strips stromal material from the epithelia at the basement membrane. The resulting small pieces of the epithelial tree (organoids) can be separated from the digested stroma by sequential filtration on membranes of fixed pore size. Depending upon pore size, fractions can be obtained consisting of larger ductal/alveolar pieces, smaller alveolar clusters, or stromal cells. We have observed superior growth when cultures are initiated as organoids rather than as dissociated single cells. Placement of organoids in culture using low-stress inducing media supports long-term growth of normal HMEC with markers of multiple lineage types (myoepithelial, luminal, progenitor)4-5. Sufficient numbers of cells can be obtained from one individual's tissue to allow extensive experimental examination using standardized cell batches, as well as interrogation using high throughput modalities. Cultured HMEC have been employed in a wide variety of studies examining the normal processes governing growth, differentiation, aging, and senescence, and how these normal processes are altered during immortal and malignant transformation4-15,16. The effects of growth in the presence of extracellular matrix material, other cell types, and/or 3D culture can be compared with growth on plastic5,15. Cultured HMEC, starting with normal cells, provide an experimentally tractable system to examine factors that may propel or prevent human aging and carcinogenesis.

[1]  A. Borowsky,et al.  Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia. , 2012, Cancer research.

[2]  Martha R. Stampfer,et al.  Epigenetic regulation of normal human mammary cell type-specific miRNAs. , 2011, Genome research.

[3]  M. Bissell,et al.  Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells , 2011, Proceedings of the National Academy of Sciences.

[4]  Heidi S Feiler,et al.  Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells. , 2009, Cancer research.

[5]  M. Stampfer,et al.  Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization. , 2009, Cancer research.

[6]  Mina J Bissell,et al.  Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. , 2009, Integrative biology : quantitative biosciences from nano to macro.

[7]  C. Paradis,et al.  All for One, or One for All? , 2007 .

[8]  T. Tlsty,et al.  Inactivation of p53 Function in Cultured Human Mammary Epithelial Cells Turns the Telomere-Length Dependent Senescence Barrier from Agonescence into Crisis , 2007, Cell cycle.

[9]  M. Stampfer,et al.  Growth of normal human mammary cells in culture , 1980, In Vitro.

[10]  M. Stampfer,et al.  Solar flair. , 2003, Molecular Cancer.

[11]  G. Peters,et al.  Regulation of the INK4b–ARF–INK4a tumour suppressor locus: all for one or one for all , 2006, Nature Reviews Molecular Cell Biology.

[12]  K. Chin,et al.  In situ analyses of genome instability in breast cancer , 2004, Nature Genetics.

[13]  P. Yaswen,et al.  Loss of p53 function accelerates acquisition of telomerase activity in indefinite lifespan human mammary epithelial cell lines , 2003, Oncogene.

[14]  P. Yaswen,et al.  Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion , 2002, Oncogene.

[15]  A. Brenner,et al.  Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation , 1998, Oncogene.

[16]  C. Greider,et al.  Developmental and tissue-specific regulation of mouse telomerase and telomere length. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Stampfer,et al.  Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. L. Hammond,et al.  Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[19]  G Anderson,et al.  All for one, one for all? , 1983, Nursing times.