Multivariate trace estimation in constant quantum depth

There is a folkloric belief that a depth-$\Theta(m)$ quantum circuit is needed to estimate the trace of the product of $m$ density matrices (i.e., a multivariate trace). We prove that this belief is overly conservative by constructing a constant quantum-depth circuit for the task, inspired by the method of Shor error correction. Furthermore, our circuit demands only local gates in a two dimensional circuit -- we show how to implement it in a highly parallelized way on an architecture similar to that of Google's Sycamore processor. With these features, our algorithm brings the task of multivariate trace estimation, crucial to applications in condensed matter and estimating nonlinear functions of quantum states, closer to the capabilities of near-term quantum processors. We instantiate the latter application with a theorem on estimating nonlinear functions of quantum states with ``well-behaved"polynomial approximations.

[1]  Xin Wang,et al.  Quantum Algorithms for Estimating Quantum Entropies , 2022, Physical Review Applied.

[2]  A. Gheorghiu,et al.  Depth-efficient proofs of quantumness , 2021, Quantum.

[3]  S. Lloyd,et al.  Quantum algorithm for Petz recovery channels and pretty good measurements , 2020, Physical review letters.

[4]  Daniel J. Brod,et al.  Measuring relational information between quantum states, and applications , 2021, New Journal of Physics.

[5]  C. Branciard,et al.  Quantum Fisher Information from Randomized Measurements. , 2021, Physical review letters.

[6]  Ranyiliu Chen,et al.  Variational quantum algorithms for trace distance and fidelity estimation , 2020, Quantum Science and Technology.

[7]  Yiğit Subaşı,et al.  Qubit-efficient entanglement spectroscopy using qubit resets , 2020, Quantum.

[8]  Min-Hsiu Hsieh,et al.  Quantum algorithm for estimating α -Renyi entropies of quantum states , 2019, Physical Review A.

[9]  Alessandro Luongo,et al.  Quantum algorithms for spectral sums , 2020, ArXiv.

[10]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[11]  Kunal Sharma,et al.  Noise resilience of variational quantum compiling , 2019, New Journal of Physics.

[12]  Tongyang Li,et al.  Distributional property testing in a quantum world , 2019, ITCS.

[13]  Nirmal V. Shende,et al.  Estimating Quantum Entropy , 2017, IEEE Journal on Selected Areas in Information Theory.

[14]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[15]  Avishay Tal,et al.  Exponential separation between shallow quantum circuits and unbounded fan-in shallow classical circuits , 2019, STOC.

[16]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.

[17]  Patrick J. Coles,et al.  Entanglement spectroscopy with a depth-two quantum circuit , 2018, Journal of Physics A: Mathematical and Theoretical.

[18]  Peter Zoller,et al.  Probing Rényi entanglement entropy via randomized measurements , 2018, Science.

[19]  Nathan Wiebe,et al.  Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics , 2018, STOC.

[20]  Jeongho Bang,et al.  Learning unknown pure quantum states , 2018, Physical Review A.

[21]  J. Cirac,et al.  Unitary n -designs via random quenches in atomic Hubbard and spin models: Application to the measurement of Rényi entropies , 2018, 1801.00999.

[22]  J I Cirac,et al.  Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models. , 2017, Physical review letters.

[23]  Matthias Troyer,et al.  Entanglement spectroscopy on a quantum computer , 2017, 1707.07658.

[24]  Himanshu Tyagi,et al.  Estimating Renyi Entropy of Discrete Distributions , 2014, IEEE Transactions on Information Theory.

[25]  Yanjun Han,et al.  Maximum Likelihood Estimation of Functionals of Discrete Distributions , 2014, IEEE Transactions on Information Theory.

[26]  Shayne Waldron,et al.  A Characterization of Projective Unitary Equivalence of Finite Frames and Applications , 2016, SIAM J. Discret. Math..

[27]  Yihong Wu,et al.  Minimax Rates of Entropy Estimation on Large Alphabets via Best Polynomial Approximation , 2014, IEEE Transactions on Information Theory.

[28]  Yanjun Han,et al.  Minimax Estimation of Functionals of Discrete Distributions , 2014, IEEE Transactions on Information Theory.

[29]  E. Mucciolo,et al.  Emergent irreversibility and entanglement spectrum statistics. , 2013, Physical review letters.

[30]  S. J. van Enk,et al.  Measuring Trρn on single copies of ρ using random measurements. , 2012, Physical review letters.

[31]  A Sanpera,et al.  Entanglement spectrum, critical exponents, and order parameters in quantum spin chains. , 2011, Physical review letters.

[32]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[33]  X. Qi,et al.  Entanglement entropy and entanglement spectrum of the Kitaev model. , 2010, Physical review letters.

[34]  Frank Pollmann,et al.  Entanglement spectrum of a topological phase in one dimension , 2009, 0910.1811.

[35]  L. Fidkowski Entanglement spectrum of topological insulators and superconductors. , 2009, Physical review letters.

[36]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[37]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[38]  Hui Li,et al.  Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. , 2008, Physical review letters.

[39]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[40]  D. Petz,et al.  Contractivity of positive and trace-preserving maps under Lp norms , 2006, math-ph/0601063.

[41]  Todd A. Bruni Measuring polynomial functions of states , 2004, Quantum Inf. Comput..

[42]  M. S. Leifer,et al.  Measuring polynomial invariants of multiparty quantum states , 2003, quant-ph/0308008.

[43]  M. Horodecki,et al.  Direct estimations of linear and nonlinear functionals of a quantum state. , 2001, Physical review letters.

[44]  P. Horodecki,et al.  Method for direct detection of quantum entanglement. , 2001, Physical review letters.

[45]  I. Chuang,et al.  Quantum Digital Signatures , 2001, quant-ph/0105032.

[46]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[47]  T. Beth,et al.  Cyclic quantum error–correcting codes and quantum shift registers , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  N. Fisher,et al.  Probability Inequalities for Sums of Bounded Random Variables , 1994 .

[49]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[50]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[51]  D. Petz Quasi-entropies for States of a von Neumann Algebra , 1985 .

[52]  V. Bargmann NOTE ON WIGNER'S THEOREM ON SYMMETRY OPERATIONS , 1964 .