Discretizations of Surfaces with Constant Ratio of Principal Curvatures

Motivated by applications in architecture, we study surfaces with a constant ratio of principal curvatures. These surfaces are a natural generalization of minimal surfaces, and can be constructed by applying a Christoffel-type transformation to appropriate spherical curvature line parametrizations, both in the smooth setting and in a discretization with principal nets. We link this Christoffel-type transformation to the discrete curvature theory for parallel meshes and characterize nets that admit these transformations. In the case of negative curvature, we also present a discretization of asymptotic nets. This case is suitable for design and computation, and forms the basis for a special type of architectural support structures, which can be built by bending flat rectangular strips of inextensible material, such as sheet metal.

[1]  Johannes Wallner,et al.  A curvature theory for discrete surfaces based on mesh parallelity , 2009, 0901.4620.

[2]  Hlawka Geometrie der Gewebe , 1939 .

[3]  A. Bobenko,et al.  Discrete Differential Geometry: Integrable Structure , 2008 .

[4]  Martin Kilian,et al.  Paneling architectural freeform surfaces , 2010, SIGGRAPH 2010.

[5]  Wai Yeung Lam Discrete minimal surfaces: critical points of the area functional from integrable systems , 2015, 1510.08788.

[6]  Udo Simon,et al.  Introduction to the affine differential geometry of hypersurfaces , 1991 .

[7]  Johannes Wallner,et al.  Architectural geometry , 2007, Comput. Graph..

[8]  Luther Pfahler Eisenhart,et al.  Introduction to Differential Geometry , 2015 .

[9]  E. B. Christoffel Ueber einige allgemeine Eigenschaften der Minimumsflächen. , 1867 .

[10]  Ivaïlo M. Mladenov,et al.  The Mylar Balloon Revisited , 2003, Am. Math. Mon..

[11]  I. Mladenov,et al.  The Mylar Ballon: New Viewpoints and Generalizations , 2007 .

[12]  Oleg Karpenkov,et al.  On the flexibility of Kokotsakis meshes , 2008, 0812.3050.

[13]  Johannes Wallner,et al.  Form-finding with polyhedral meshes made simple , 2014, ACM Trans. Graph..

[14]  Carlos M. C. Riveros,et al.  Surfaces with constant Chebyshev angle , 2012 .

[15]  U. Hertrich-Jeromin,et al.  DISCRETE LINEAR WEINGARTEN SURFACES , 2014, Nagoya Mathematical Journal.

[16]  Andrew J. Hanson,et al.  Quaternion Frame Approach to Streamline Visualization , 1995, IEEE Trans. Vis. Comput. Graph..

[17]  Martin Kilian,et al.  Analysis and design of curved support structures , 2016 .

[18]  Yuri B. Suris,et al.  Discrete Koenigs Nets and Discrete Isothermic Surfaces , 2007, 0709.3408.

[19]  Johannes Wallner,et al.  Oriented Mixed Area and Discrete Minimal Surfaces , 2010, Discret. Comput. Geom..

[20]  H. Hopf Über Flächen mit einer Relation zwischen den Hauptkrümmungen. Meinem Lehrer Erhard Schmidt in Verehrung und Freundschaft zum 75. Geburtstag gewidmet. , 1950 .