Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data

[1] A new dynamic-statistical parameterization of snow-free land surface albedo is developed using the Moderate Resolution Imaging Spectroradiometer (MODIS) products of broadband black-sky and white-sky reflectance and vegetation and the North American and Global Land Data Assimilation System (LDAS) outputs of soil moisture during 2000–2003. The dynamic component represents the predictable albedo dependences on solar zenith angle, surface soil moisture, fractional vegetation cover, leaf plus stem area index, and greenness, while the statistical part represents the correction for static effects that are specific to local surface characteristics. All parameters of the dynamic and statistical components are determined by solving nonlinear constrained optimization problems of a physically based conceptual model for the minimization of the bulk variances between simulations and observations. They all depend on direct beam or diffuse radiation and visible or near-infrared band. The dynamic parameters are also functions of land cover category, while the statistical factors are specific to geographic location. The new parameterization realistically represents surface albedo variations, including the mean, shape, and distribution, around each dependent parameter. For composites of all temporal and spatial samples of the same land cover category over North America, correlation coefficients between the dynamic component of the new parameterization and the MODIS data range from 0.39 to 0.88, while relative errors vary within 8–42%. The gross (i.e., integrated over all categories) correlations and errors are 0.57–0.71 and 17–26%, changing with direct beam or diffuse radiation and visible or near-infrared band. The static local correction results in a further reduction in relative errors, producing gross values of 11–21%. The new parameterization is a marked improvement over the existing albedo scheme of the state-of-the-art Common Land Model (CLM), which has correlation coefficients from −0.57 to 0.71 and relative errors of 18–140% for individual land cover categories, and gross values of 0.03–0.32 and 37–71%, respectively.

[1]  K. Mitchell,et al.  Assessment of the Land Surface and Boundary Layer Models in Two Operational Versions of the NCEP Eta Model Using FIFE Data , 1997 .

[2]  J. K.,et al.  Estimating Big Bluestem Albedo from Directional Reflectance Measurements , 2002 .

[3]  C. L. Brest Seasonal albedo of an urban/rural landscape from satellite observations , 1987 .

[4]  R. Lacaze,et al.  A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models , 2003 .

[5]  T. Ishiyama,et al.  Ground surface features of the Taklimakan desert , 1996 .

[6]  J. D. Tarpley,et al.  Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season , 2003 .

[7]  S. Seneviratne,et al.  Basin scale estimates of evapotranspiration using GRACE and other observations , 2004 .

[8]  Ning Zeng,et al.  Sensitivity of Tropical Land Climate to Leaf Area Index: Role of Surface Conductance versus Albedo* , 2004 .

[9]  R. Dickinson,et al.  Relating MODIS‐derived surface albedo to soils and rock types over Northern Africa and the Arabian peninsula , 2002 .

[10]  F. S. Nakayama,et al.  The Dependence of Bare Soil Albedo on Soil Water Content. , 1975 .

[11]  Ying Ping Wang,et al.  A comparison of three different canopy radiation models commonly used in plant modelling. , 2003, Functional plant biology : FPB.

[12]  R. Dickinson,et al.  Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community climate model. Technical note. [NCAR (National Center for Atmospheric Research)] , 1993 .

[13]  Piers J. Sellers,et al.  A Simplified Biosphere Model for Global Climate Studies , 1991 .

[14]  M. H. Costa,et al.  Climate Change after Tropical Deforestation: Seasonal Variability of Surface Albedo and Its Effects on Precipitation Change , 2003 .

[15]  T. Eck,et al.  The albedo of a tropical evergreen forest , 1980 .

[16]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[17]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[18]  M. G. Hodnett,et al.  The Albedo of Amazonian Forest and Ranch Land , 1995 .

[19]  Wei Gao,et al.  Sustainability of vegetation over northwest China:I. Climate response to grassland , 2003, SPIE Asia-Pacific Remote Sensing.

[20]  A. L. Tits,et al.  User's Guide for FSQP Version 3.0c: A FORTRAN Code for Solving Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality and Linear Constraints , 1992 .

[21]  Roger A. Pielke,et al.  A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology , 1989 .

[22]  Yongkang Xue,et al.  The Influence of Land Surface Properties on Sahel Climate. Part 1: Desertification , 1993 .

[23]  R. DeFries,et al.  Derivation and Evaluation of Global 1-km Fractional Vegetation Cover Data for Land Modeling , 2000 .

[24]  K. Mitchell,et al.  A parameterization of snowpack and frozen ground intended for NCEP weather and climate models , 1999 .

[25]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[26]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[27]  R. Dickinson,et al.  The land surface climatology of the community land model coupled to the NCAR community climate model , 2002 .

[28]  G. Gayno,et al.  Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model , 2003 .

[29]  Lifeng Luo,et al.  An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS) , 2003 .

[30]  C. Potter,et al.  Analysis of a multiyear global vegetation leaf area index data set , 2002 .

[31]  D. Diner,et al.  Surface albedo retrieval from Meteosat: 1. Theory , 2000 .

[32]  Ann Henderson-Sellers,et al.  Surface albedo data for climatic modeling , 1983 .

[33]  D. Lobell,et al.  Moisture effects on soil reflectance , 2002 .

[34]  B. Pinty,et al.  A physical model of the bidirectional reflectance of vegetation canopies , 1990 .

[35]  J. Charney Dynamics of deserts and drought in the Sahel , 1975 .

[36]  Y. Xue,et al.  Modeling of land surface evaporation by four schemes and comparison with FIFE observations , 1996 .

[37]  R. Dickinson,et al.  Relating surface albedos in GCM to remotely sensed data , 1990 .

[38]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[39]  John L. Dwyer,et al.  Comparison of MODIS and AVHRR 16‐day normalized difference vegetation index composite data , 2004 .

[40]  R. P. Cechet,et al.  The Impact of the Diurnal Variation of Albedo on the Remote Sensing of the Daily Mean Albedo of Grassland , 2000 .

[41]  B. Bonan,et al.  A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User's Guide , 1996 .

[42]  R. Dickinson,et al.  The Common Land Model , 2003 .

[43]  R. Dickinson Land Surface Processes and Climate—Surface Albedos and Energy Balance , 1983 .

[44]  K. Oleson,et al.  Assessment of global climate model land surface albedo using MODIS data , 2003 .

[45]  R. Dickinson,et al.  Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model , 2003 .

[46]  Yann Kerr,et al.  The hydrosphere State (hydros) Satellite mission: an Earth system pathfinder for global mapping of soil moisture and land freeze/thaw , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[47]  A. Strahler,et al.  Retrieval of Land Surface Albedo from Satellite Observations: A Simulation Study , 1999 .

[48]  E. Muller,et al.  Modeling soil moisture-reflectance , 2001 .

[49]  C. Tucker,et al.  Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999 , 2001 .

[50]  Robert E. Dickinson,et al.  A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance , 2004 .

[51]  R. Dickinson,et al.  Modeling the bidirectional reflectance distribution function of mixed finite plant canopies and soil , 1994 .

[52]  D. Diner,et al.  Surface albedo retrieval from Meteosat: 2. Applications , 2000 .

[53]  Zhanqing Li,et al.  Impact of surface inhomogeneity on solar radiative transfer under overcast conditions , 2002 .

[54]  J. D. Tarpley,et al.  Surface radiation budgets in support of the GEWEX Continental‐Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project , 2003 .

[55]  Zong-Liang Yang,et al.  Comparison of albedos computed by land surface models and evaluation against remotely sensed data , 2001 .

[56]  J. D. Tarpley,et al.  Real‐time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project , 2003 .

[57]  R. Dickinson,et al.  Coupling of the Common Land Model to the NCAR Community Climate Model , 2002 .

[58]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[59]  Feng Gao,et al.  Land boundary conditions from MODIS data and consequences for the albedo of a climate model , 2004 .

[60]  H. Mooney,et al.  The energy balance of leaves of the evergreen desert shrub Atriplex hymenelytra , 1977, Oecologia.

[61]  Robert D. Cess,et al.  Biosphere-Albedo Feedback and Climate Modeling , 1978 .

[62]  Patrick Minnis,et al.  Comparison of regional clear-sky albedos inferred from satellite-observations and model computations , 1986 .

[63]  A. Henderson‐sellers,et al.  A global archive of land cover and soils data for use in general circulation climate models , 1985 .

[64]  Piers J. Sellers,et al.  A Global Climatology of Albedo, Roughness Length and Stomatal Resistance for Atmospheric General Circulation Models as Represented by the Simple Biosphere Model (SiB) , 1989 .

[65]  Garik Gutman,et al.  On Modeling Dynamics of Geobotanic State–Climate Interaction , 1986 .

[66]  Lake Springfield,et al.  Illinois State Water Survey , 1991 .

[67]  M. Guérif,et al.  Crop reflectance estimate errors from the SAIL model due to spatial and temporal variability of canopy and soil characteristics , 1998 .

[68]  R. DeFries,et al.  Interannual variability and decadal trend of global fractional vegetation cover from 1982 to 2000 , 2003 .

[69]  J. Goudriaan,et al.  Crop Micrometeorology: A Simulation Study , 1977 .

[70]  Hannes Flühler,et al.  Modeling light scattering at soil surfaces , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[71]  P. Duynkerke The roughness length for heat and other vegetation parameters for a surface of short grass , 1992 .

[72]  Feng Gao,et al.  Using MODIS BRDF and albedo data to evaluate global model land surface albedo , 2004 .

[73]  R. Betts Offset of the potential carbon sink from boreal forestation by decreases in surface albedo , 2000, Nature.

[74]  D. S. Kimes,et al.  Hemispherical Reflectance Variations of Vegetation Canopies and Implications for Global and Regional Energy Budget Studies , 1987 .

[75]  L. Nkemdirim A Note on the Albedo of Surfaces , 1972 .

[76]  Paul A. Dirmeyer,et al.  Albedo as a modulator of climate response to tropical deforestation , 1994 .

[77]  R. Koster,et al.  Modeling the land surface boundary in climate models as a composite of independent vegetation stands , 1992 .

[78]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[79]  L. Ferreira,et al.  Surface roughness effects on soil albedo , 2000 .

[80]  Yann Kerr,et al.  Two-Dimensional Microwave Interferometer Retrieval Capabilities over Land Surfaces (SMOS Mission) , 2000 .

[81]  K. Caldeira,et al.  Land use changes and northern hemisphere cooling , 2001 .

[82]  S. Running,et al.  MODIS Leaf Area Index (LAI) And Fraction Of Photosynthetically Active Radiation Absorbed By Vegetation (FPAR) Product , 1999 .

[83]  P. Sellers,et al.  Testing the Simple Biosphere model (SiB) using point micrometeorological and biophysical data , 1987 .

[84]  Gunnar Myhre,et al.  Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes , 2003 .

[85]  P. Sellers Canopy reflectance, photosynthesis and transpiration , 1985 .

[86]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[87]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[88]  K. Kriebel,et al.  Albedo of vegetated surfaces: its variability with differing irradiances , 1979 .

[89]  S. Liang Narrowband to broadband conversions of land surface albedo I Algorithms , 2001 .

[90]  B. Lofgren Surface Albedo–Climate Feedback Simulated Using Two-Way Coupling , 1995 .

[91]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[92]  N. C. Strugnell,et al.  An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs , 2001 .

[93]  Jiancheng Shi,et al.  An observing system simulation experiment for hydros radiometer-only soil moisture products , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[94]  Jack Kornfield,et al.  A Comparative Study of the Effects of Albedo Change on Drought in Semi-Arid Regions. , 1977 .