Functional interpretations of linear and intuitionistic logic

This paper surveys several computational interpretations of classical linear logic based on two-player one-move games. The moves of the games are higher-order functionals in the language of finite types. All interpretations discussed treat the exponential-free fragment of linear logic in a common way. They only differ in how much advantage one of the players has in the exponential games. We discuss how the several choices for the interpretation of the modalities correspond to various well-known functional interpretations of intuitionistic logic, including Godel's Dialectica interpretation and Kreisel's modified realizability.

[1]  Paulo Oliva,et al.  Bounded functional interpretation , 2005, Ann. Pure Appl. Log..

[2]  Jeremy Avigad,et al.  Chapter V – Gödel’s Functional (“Dialectica”) Interpretation , 1998 .

[3]  Bodil Biering Cartesian closed Dialectica categories , 2008, Ann. Pure Appl. Log..

[4]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[5]  Paulo Oliva An Analysis of Gödel's dialectica Interpretation via Linear Logic , 2008 .

[6]  Valeria de Paiva,et al.  A Dialectica-like Model of Linear Logic , 1989, Category Theory and Computer Science.

[7]  Masaru Shirahata THE DIALECTICA INTERPRETATION OF FIRST-ORDER CLASSICAL AFFINE LOGIC , 2006 .

[8]  Paulo Oliva,et al.  Bounded functional interpretation and feasible analysis , 2007, Ann. Pure Appl. Log..

[9]  Julian C. Bradfield,et al.  Independence: Logics and Concurrency , 2000, CSL.

[10]  Andreas Blass,et al.  Questions and answers: a category arising in linear logic complexity theory, and set theory , 1993, math/9309208.

[11]  Paulo Oliva,et al.  Unifying Functional Interpretations , 2006, Notre Dame J. Formal Log..

[12]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[13]  Thomas Strahm Dialectica. Special Issue: Gödel's dialectica Interpretation , 2008 .

[14]  Paulo Oliva,et al.  Modified Realizability Interpretation of Classical Linear Logic , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[15]  Andreas Blass,et al.  Henkin quantifiers and complete problems , 1986, Ann. Pure Appl. Log..

[16]  Marc Bezem,et al.  Strongly majorizable functionals of finite type: A model for barrecursion containing discontinuous functionals , 1985, Journal of Symbolic Logic.

[17]  S. Buss Handbook of proof theory , 1998 .

[18]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[19]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[20]  A. Mostowski On a generalization of quantifiers , 1957 .

[21]  J. Diller Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen , 1974 .

[22]  Jean-Yves Girard,et al.  Towards a geometry of interaction , 1989 .

[23]  Martin Stein Interpretationen der Heyting-Arithmetik endlicher Typen , 1978, Arch. Math. Log..

[24]  Douglas S. Bridges,et al.  Constructivity in Mathematics , 2004 .