Turbine Burners: Flameholding in Accelerating Flow

A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine on a turbojet or turbofan engine is discussed, identifying the potential for improvement in performance. Previous researches on reacting mixing layers in accelerating flows, flameholding in high-speed flows, and various types of compact combustors are reviewed. An overview is given of experimental and computational research at UCI on the use of cavities to stabilize flames in accelerating and turning flows. Some indications for optimizing the cavity design are presented. Effects of the cavity length and depth, injection orientation for fuel and air into the cavity, and Reynolds number magnitude are discussed. The needs for future work are identified.

[1]  C. Law,et al.  Ignition in the supersonic hydrogen/air mixing layer with reduced reaction mechanisms , 1994 .

[2]  Inchul Kim,et al.  Diffusion flame in a two-dimensional, accelerating mixing layer , 1997 .

[3]  D. Spalding,et al.  Heat and Mass Transfer in Boundary Layers. 2nd edition. By S. V. PATANKAR and D. B. SPALDING. Intertext Books, 1970. 255 pp. £6. , 1971, Journal of Fluid Mechanics.

[4]  Jinsheng Cai,et al.  Ignition and Flame Studies for Turbulent Transonic Mixing in a Curved Duct Flow , 2001 .

[5]  Feng Liu,et al.  Ignition and flame studies for a turbulent accelerating transonic mixing layer , 2001 .

[6]  Thomas L. Jackson,et al.  Ignition and structure of a laminar diffusion flame in a compressible mixing layer with finite rate chemistry , 1991 .

[7]  Irvin Glassman Combustion, Third Edition , 1977 .

[8]  Ronald K. Hanson,et al.  Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview , 2001 .

[9]  Juan I. Ramos,et al.  Probability Density Function Calculations in Turbulent Chemically Reacting Round Jets, Mixing Layers and One-Dimensional Reactors , 1985 .

[10]  Ting-Yi Li,et al.  Similar Solutions of Compressible Boundary-Layer Equations , 1953 .

[11]  L. J. Spadaccini,et al.  Ignition delay characteristics of methane fuels , 1994 .

[12]  H. Schlichting Boundary Layer Theory , 1955 .

[13]  Debasis Chakraborty,et al.  A thermo-chemical exploration of a two-dimensional reacting supersonic mixing layer , 1997 .

[14]  T. Y. Li On an Integral Equation in the Supersonic Oscillating Wing Theory , 1953 .

[15]  Blake C. Chenevert,et al.  The Development of a Lean-Premixed Trapped Vortex Combustor , 2003 .

[16]  Feng Liu,et al.  Reacting Mixing-Layer Computations in a Simulated Turbine-Stator Passage , 2009 .

[17]  Dale T. Shouse,et al.  The Behavior of an Ultra-Compact Combustor (UCC) Based on Centrifugally-Enhanced Turbulent Burning Rates , 2004 .

[18]  Feng Liu,et al.  Nonpremixed Combustion in an Accelerating Transonic Flow Undergoing Transition , 2005 .

[19]  Roland H. Krauss,et al.  Experimental Supersonic Hydrogen Combustion Employing Staged Injection Behind a Rearward-Facing Step , 1993 .

[20]  W. Sirignano,et al.  Performance Increases for Gas-Turbine Engines Through Combustion Inside the Turbine , 1999 .

[21]  F. Billig,et al.  Performance of an aerodynamic ramp fuel injector in a scramjet combustor , 2000 .

[22]  Jeffrey M. Donbar,et al.  Experimental assessment of a fuel injector for scramjet applications , 2000 .

[23]  Jeffrey M. Donbar,et al.  Fuel Distribution About a Cavity Flameholder in Supersonic Flow , 2000 .

[24]  William A. Sirignano,et al.  On the Ignition of a Pre-Mixed Fuel by a Hot Projectile , 1970 .

[25]  J. F. Griffiths Combustion, third edition: Irvin Glassman Academic Press, New York, 1996, pp. 600, ISBN 0-12-285852-2, hardback, US$69.95, £55 , 1997 .

[26]  Dale T. Shouse,et al.  Operability and Efficiency Performance of Ultra-Compact, High Gravity (g) Combustor Concepts (Postprint) , 2007 .

[27]  Dale T. Shouse,et al.  Ultra-Compact Combustors for Advanced Gas Turbine Engines , 2004 .

[28]  T. E. Lippert,et al.  Gas Turbine Reheat Using In-Situ Combustion , 2004 .

[29]  C. Westbrook,et al.  Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames , 1981 .

[30]  F. Billig,et al.  Liquid JP-7 combustion in a scramjet combustor , 2000 .

[31]  Feng Liu,et al.  Nonpremixed Combustion in an Accelerating Turning Transonic Flow Undergoing Transition , 2005 .

[32]  Brian T. Helenbrook,et al.  Ignition in the supersonic hydrogen/air mixing layer with reduced reaction mechanisms , 1996 .

[33]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[34]  Chung King Law,et al.  Analysis of thermal ignition in the supersonic mixing layer , 1993 .

[35]  M.,et al.  AN ASYMPTOTIC ANALYSIS OF SUPERSONIC REACTING MIXING LAYERS , 2004 .

[36]  Morteza Gharib,et al.  The effect of flow oscillations on cavity drag , 1987, Journal of Fluid Mechanics.

[37]  J.Zelina,et al.  Flow Measurements Within A High Swirl Ultra Compact Combustor For Gas Turbine Engines , 2003 .

[38]  Paul M. Chung,et al.  Chemically Reacting Nonequilibrium Boundary Layers , 1965 .

[39]  Andrew P. Lapsa,et al.  Experimental study on the effects of large centrifugal forces on step-stabilized flames , 2007 .

[40]  Feng Liu,et al.  Turbojet and turbofan engine performance increases through turbine burners , 2000 .

[41]  H. W. Emmons,et al.  The Film Combustion of Liquid Fuel , 1956 .

[42]  C. R. Illingworth Steady flow in the laminar boundary layer of a gas , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  G. J. Sturgess,et al.  Ultra-Compact Combustion Technology Using High Swirl for Enhanced Burning Rate , 2002 .

[44]  J.Zelina,et al.  Fuel Injection Design Optimization For An Ultra-compact Combustor , 2003 .

[45]  F. Billig Research on supersonic combustion , 1992 .

[46]  Clarence B. Cohen Similar Solutions of Compressible Laminar Boundary-Layer Equations , 1954 .

[47]  Eli Reshotko,et al.  The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient , 1956 .

[48]  P. Kennedy,et al.  Spray penetration heights of angle-injected aerated-liquid jets in supersonic crossflows , 2000 .

[49]  M. Y. Hussaini,et al.  An asymptotic analysis of supersonic reacting mixing layers , 1988 .

[50]  Thomas L. Jackson,et al.  Combustion in high-speed flows , 1994 .

[51]  Wright-Patterson Afb,et al.  SPRAY STRUCTURES OF AERATED LIQUID FUEL JETS IN SUPERSONIC CROSSFLOWS , 1999 .

[52]  K. Stewartson,et al.  Correlated incompressible and compressible boundary layers , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[53]  J. Rossiter Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds , 1964 .

[54]  Chih-Jen Sung,et al.  Investigation of fuel injection and flame stabilization in liquid hydrocarbon-fueled supersonic combustors , 2001 .

[55]  G. J. Sturgess,et al.  Emissions Reduction Technologies for Military Gas Turbine Engines , 2005 .

[56]  S. Menon,et al.  Simulation of fuel-air mixing and combustion in a trapped-vortex combustor , 2000 .

[57]  Drummond J. Philip,et al.  Future Direction of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion , 1997 .

[58]  Frank E. Marble,et al.  Ignition and combustion in a laminar mixing zone , 1954 .

[60]  William A. Sirignano,et al.  Ignition and Flame Studies for an Accelerating Transonic Mixing Layer , 2001 .