Mixed Precision GMRES-based Iterative Refinement with Recycling
暂无分享,去创建一个
[1] Erin Carson,et al. Multistage Mixed Precision Iterative Refinement , 2021, ArXiv.
[2] Ronald B. Morgan,et al. GMRES with Deflated Restarting , 2002, SIAM J. Sci. Comput..
[3] Xiaomei Yang. Rounding Errors in Algebraic Processes , 1964, Nature.
[4] Mark Embree,et al. The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..
[5] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[6] Nicholas J. Higham,et al. Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions , 2018, SIAM J. Sci. Comput..
[7] N. Higham,et al. Five-Precision GMRES-Based Iterative Refinement , 2024, SIAM J. Matrix Anal. Appl..
[8] Jörg Liesen,et al. The Worst-Case GMRES for Normal Matrices , 2004 .
[9] Eric de Sturler,et al. A survey of subspace recycling iterative methods , 2020, ArXiv.
[10] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[11] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[12] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[13] James M. Varah,et al. The prolate matrix , 1993 .
[14] Jack Dongarra,et al. Accelerating Restarted GMRES With Mixed Precision Arithmetic , 2021, IEEE Transactions on Parallel and Distributed Systems.
[15] Nicholas J. Higham,et al. Simulating Low Precision Floating-Point Arithmetic , 2019, SIAM J. Sci. Comput..
[16] Nicholas J. Higham,et al. A New Analysis of Iterative Refinement and Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems , 2017, SIAM J. Sci. Comput..