Physics of pedestal density profile formation and its impact on H-mode density limit in burning plasmas

Based on semianalytic modeling of experimental H-mode density profiles, a pedestal density limit is computed for a prototypical next generation burning plasma. For a range of input assumptions, the projected limit lies near or above Greenwald density limit [M. Greenwald, J. L. Terry, S. M. Wolfe, S. Ejima, M. G. Bell, S. M. Kaye, and G. H. Neilson, Nucl. Fusion 28, 2199 (1988)]. Two separate models are developed and utilized: the first model determines the edge density profile from consideration of cross-field transport in the steep gradient region and the distribution of fueling sources. It is shown that the observed shape of the density profile in H-mode can be explained with constant particle diffusivity within the separatrix. The second model determines the separatrix density above which the conduction limited scrape-off layer (SOL) transport is no longer sustainable. These results imply that further increases in pedestal density (while maintaining separatrix density below the power balance limit) are...

[1]  T. Petrie,et al.  Density limit studies on DIII-D , 1998 .

[2]  Study of the conditions for spontaneous H(high)-mode transitions in DIII-D , 1996 .

[3]  T. Petrie,et al.  Investigation of physical processes limiting plasma density in high confinement mode discharges on DIII-D , 1997 .

[4]  CurrentDrive,et al.  Chapter?8: Plasma operation and control , 1999 .

[5]  Y. Kamada,et al.  Extended JT-60U plasma regimes for high integrated performance , 2001 .

[6]  R. Aymar,et al.  Overview of ITER-FEAT - The future international burning plasma experiment , 2001 .

[7]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[8]  D. N. Hill,et al.  Investigation of electron parallel pressure balance in the scrapeoff layer of deuterium-based radiative divertor discharges in DIII-D , 1997 .

[9]  B. Rogers,et al.  Phase space of tokamak edge turbulence, the L-H transition, and the formation of the edge pedestal , 1998 .

[10]  K. Borrass,et al.  Disruptive tokamak density limit as scrape-off layer/divertor phenomenon , 1991 .

[11]  C. M. Greenfield,et al.  HIGH PERFORMANCE H-MODE PLASMAS AT DENSITIES ABOVE THE GREENWALD LIMIT , 2002 .

[12]  T. Petrie,et al.  Gas puff fueled H-mode discharges with good energy confinement above the Greenwald density limit on DIII-D , 2001 .

[13]  Olivier Sauter,et al.  Long timescale density peaking in JET , 2002 .

[14]  R. J. Colchin,et al.  The role of neutrals in high-mode (H-mode) pedestal formation , 2002 .

[15]  H. Zohm,et al.  Behaviour of density profiles of H-mode discharges in ASDEX Upgrade , 2002 .

[16]  G. Porter,et al.  Detailed comparison of simulated and measured plasma profiles in the scrape-off layer and edge plasma of DIII-D , 2000 .

[17]  R. J. Groebner,et al.  Critical edge parameters for H-mode transition in DIII-D , 1997 .

[18]  W. Engelhardt,et al.  Influence of an ergodic magnetic limiter on the impurity content in a tokamak , 1978 .

[19]  H. Zohm,et al.  CORRIGENDUM: Pellet fuelling of ELMy H mode discharges on ASDEX upgrade , 1996 .

[20]  P. Stangeby The Plasma Boundary of Magnetic Fusion Devices , 2000 .

[21]  R. J. Groebner,et al.  Scaling studies of the high mode pedestal , 1998 .

[22]  S. Wolfe,et al.  A new look at density limits in tokamaks , 1988 .