Information processing mechanisms in microtubules at physiological temperature: Model predictions for experimental tests

Both direct and indirect experimental evidence has shown signaling, communication and conductivity in microtubules (MTs). Theoretical models have predicted that MTs can be potentially used for both classical and quantum information processing although controversies arose in regard to physiological temperature effects on these capabilities. In this paper, MTs have been studied using well-established principles of classical statistical physics as applied to information processing, information storage and signal propagation. To investigate the existence of information processing in MTs we used cellular automata (CA) models with neighbor rules based on the electrostatic properties of the molecular structure of tubulin, and both synchronous and asynchronous updating methods. We obtained a phase diagram of possible dynamic behaviors in MTs that depend on the values of characteristic physical parameters that can be experimentally verified.

[1]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[2]  J. Pokorný,et al.  Viscous Effects on Polar Vibrations in Microtubules , 2003 .

[3]  J. Tuszynski,et al.  Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon , 2005, European Biophysics Journal.

[4]  Jack A. Tuszynski,et al.  Ferroelectric behavior in microtubule dipole lattices: Implications for information processing, signaling and assembly/disassembly* , 1995 .

[5]  Gregory Goddard,et al.  Biomolecules as nanomaterials: interface characterization for sensor development , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[6]  R. H. Good,et al.  A WKB-Type Approximation to the Schrödinger Equation , 1953 .

[7]  J. Tuszynski The emerging physics of consciousness , 2006 .

[8]  A. Eker,et al.  Intraprotein radical transfer during photoactivation of DNA photolyase , 2000, Nature.

[9]  S. Hameroff Quantum computation in brain microtubules? The Penrose-Hameroff 'Orch OR' model of consciousness , 1998 .

[10]  J. Dreyer Electron transfer in biological systems: an overview , 1984, Experientia.

[11]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[12]  J. Barton,et al.  Evidence of Electron Transfer from Peptides to DNA: Oxidation of DNA-Bound Tryptophan Using the Flash-Quench Technique , 2000 .

[13]  Sergey Edward Lyshevski,et al.  Nano and Molecular Electronics Handbook , 2018 .

[14]  P. Hawrylak,et al.  Dielectric polarization, electrical conduction, information processing and quantum computation in microtubules. Are they plausible? , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[16]  Max Tegmark,et al.  The importance of quantum decoherence in brain processes , 1999, ArXiv.

[17]  S. Hameroff,et al.  Quantum computation in brain microtubules: decoherence and biological feasibility. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  J. Glanz Force-Carrying Web Pervades Living Cell , 1997, Science.

[19]  J. Winkler,et al.  Electron Transfer In Proteins , 1997, QELS '97., Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[20]  S. Wolfram,et al.  Two-dimensional cellular automata , 1985 .

[21]  Jack A. Tuszynski,et al.  SEARCH FOR QUANTUM AND CLASSICAL MODES OF INFORMATION PROCESSING IN MICROTUBULES: IMPLICATIONS FOR “THE LIVING STATE” , 2003 .

[22]  J. Köhler,et al.  Making electrical contact to single molecules , 1998 .

[23]  J. Tuszynski,et al.  DIPOLE INTERACTIONS IN AXONAL MICROTUBULES AS A MECHANISM OF SIGNAL PROPAGATION , 1997 .

[24]  B Pullman,et al.  ELECTRON-DONOR AND -ACCEPTOR PROPERTIES OF BIOLOGICALLY IMPORTANT PURINES, PYRIMIDINES, PTERIDINES, FLAVINS, AND AROMATIC AMINO ACIDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Pokorný,et al.  Excitation of vibrations in microtubules in living cells. , 2004, Bioelectrochemistry.

[26]  H. Schuessler,et al.  Tubulin dipole moment, dielectric constant and quantum behavior: computer simulations, experimental results and suggestions. , 2004, Bio Systems.

[27]  M. Razavy,et al.  Quantum Theory of Tunneling , 2003 .

[28]  Jack Tuszynski,et al.  Conduction pathways in microtubules, biological quantum computation, and consciousness. , 2002, Bio Systems.

[29]  Raoul Kopelman,et al.  "Nanosized voltmeter" enables cellular-wide electric field mapping. , 2007, Biophysical journal.

[30]  J. Pokorný,et al.  Conditions for coherent vibrations in the cytoskeleton. , 1999, Bioelectrochemistry and bioenergetics.

[31]  G. Gundersen,et al.  Microtubules and signal transduction. , 1999, Current opinion in cell biology.

[32]  C. S. Chen,et al.  Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. D. Eley Studies of Organic Semiconductors for 40 Years—I The Mobile π-Electron—40 Years on , 1989 .

[34]  Robert David James Campbell Information processing in microtubules , 2002 .

[35]  E. Nogales,et al.  Refined structure of alpha beta-tubulin at 3.5 A resolution. , 2001, Journal of molecular biology.

[36]  H. Fröhlich Long-range coherence and energy storage in biological systems , 1968 .

[37]  C. Dennison,et al.  Biological electron transfer: structural and mechanistic studies. , 1995, Biochimie.

[38]  E. Muto,et al.  Dielectric measurement of individual microtubules using the electroorientation method. , 2006, Biophysical journal.

[39]  David G. Green,et al.  Ordered asynchronous processes in multi-agent systems , 2005 .

[40]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[41]  H. Fröhlich,et al.  Bose condensation of strongly excited longitudinal electric modes , 1968 .

[42]  Harry B Gray,et al.  Electron tunneling through proteins , 2003, Quarterly Reviews of Biophysics.

[43]  Stéphanie Portet,et al.  Elastic vibrations in seamless microtubules , 2005, European Biophysics Journal.

[44]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Steen Rasmussen,et al.  Molecular Automata in Microtubules: Basic Computational Logic of the Living State? , 1987, IEEE Symposium on Artificial Life.

[46]  Jiří Hašek,et al.  ELECTROMAGNETIC ACTIVITY OF YEAST CELLS IN THE M PHASE , 2001 .

[47]  Luiz Pinguelli Rosa,et al.  Quantum models of the mind: are they compatible with environment decoherence? , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Jack A. Tuszynski,et al.  Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules , 2005, Math. Comput. Model..

[49]  J. Oliver,et al.  Fluorescence techniques for following interactions of microtubule subunits and membranes , 1975, Nature.

[50]  P. Deymier,et al.  Experimental evaluation of electrical conductivity of microtubules , 2007 .

[51]  Jack A. Tuszynski,et al.  The Dendritic Cytoskeleton as a Computational Device: An Hypothesis , 2006 .