Glaser coupling- and Sonogashira coupling-control over CuxO nanoparticles/carbon nanotube by switching visible-light off and on

[1]  Song Xue,et al.  Light switching of amine oxidation products from oximes to imines: Superior activity of plasmonic gold nanorods-loaded TiO2(B) nanofibers under visible-near IR light , 2020 .

[2]  K. Hwang,et al.  Cu2O Nanocrystals-Catalyzed Photoredox Sonogashira Coupling of Terminal Alkynes and Arylhalides Enhanced by CO2. , 2020, ChemSusChem.

[3]  P. Jain,et al.  The chemical potential of plasmonic excitations. , 2019, Angewandte Chemie.

[4]  Can-Liang Ma,et al.  A general asymmetric copper-catalysed Sonogashira C(sp3)–C(sp) coupling , 2019, Nature Chemistry.

[5]  E. Waclawik,et al.  Plasmonic Switching of the Reaction Pathway: Visible-Light Irradiation Varies the Reactant Concentration at the Solid-Solution Interface of a Gold-Cobalt Catalyst. , 2019, Angewandte Chemie.

[6]  L. G. Tomilova,et al.  Palladium(II) octaalkoxy- and octaphenoxyphthalocyanines: Synthesis and evaluation as catalysts in the Sonogashira reaction , 2019, Journal of Catalysis.

[7]  Hongshan He,et al.  A BODIPY-functionalized PdII photoredox catalyst for Sonogashira C-C cross-coupling reactions. , 2019, Chemical communications.

[8]  Z. Li,et al.  Visible-light-initiated Sonogashira coupling reactions over CuO/TiO2 nanocomposites , 2019, Catalysis Science & Technology.

[9]  S. Haigh,et al.  Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts , 2018, Nano letters.

[10]  W. Thiel,et al.  Mechanism of the Visible-Light-Mediated Copper-Catalyzed Coupling Reaction of Phenols and Alkynes. , 2018, Journal of the American Chemical Society.

[11]  B. Wang,et al.  Photocatalytic Sonogashira reaction over silicon carbide supported Pd–Cu alloy nanoparticles under visible light irradiation , 2018 .

[12]  T. Liang,et al.  A radical approach to the copper oxidative addition problem: Trifluoromethylation of bromoarenes , 2018, Science.

[13]  Xiang-Yun Guo,et al.  Visible-light-enhanced photocatalytic Sonogashira reaction over silicon carbide supported Pd nanoparticles , 2017 .

[14]  Chuncheng Chen,et al.  Copper‐Based Coordination Polymer Nanostructure for Visible Light Photocatalysis , 2016, Advanced materials.

[15]  Hangqi Zhao,et al.  Heterometallic antenna−reactor complexes for photocatalysis , 2016, Proceedings of the National Academy of Sciences.

[16]  K. Hwang,et al.  Photoinduced Copper-Catalyzed Regioselective Synthesis of Indoles: Three-Component Coupling of Arylamines, Terminal Alkynes, and Quinones. , 2015, Angewandte Chemie.

[17]  Jeffrey T. Miller,et al.  Cu(II)-Cu(I) synergistic cooperation to lead the alkyne C-H activation. , 2014, Journal of the American Chemical Society.

[18]  Huaiyong Zhu,et al.  Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature. , 2013, Chemical communications.

[19]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[20]  J. Santhanalakshmi,et al.  Synthesis of Gold-Palladium Bimetallic Nanoparticles and Surface Catalytic Activity in Suzuki Coupling Reactions Using in FTIR Spectroscopy , 2012 .

[21]  M. Yus,et al.  Heterogeneous Catalytic Homocoupling of Terminal Alkynes , 2012 .

[22]  Huaiyong Zhu,et al.  Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation. , 2012, Chemical communications.

[23]  Min Liu,et al.  Hybrid Cu(x)O/TiO₂ nanocomposites as risk-reduction materials in indoor environments. , 2012, ACS nano.

[24]  Alison E Wendlandt,et al.  Copper-catalyzed aerobic oxidative C-H functionalizations: trends and mechanistic insights. , 2011, Angewandte Chemie.

[25]  Liang‐Nian He,et al.  Copper(II) chloride-catalyzed Glaser oxidative coupling reaction in polyethylene glycol , 2011 .

[26]  Xile Hu,et al.  Ni-catalyzed Sonogashira coupling of nonactivated alkyl halides: orthogonal functionalization of alkyl iodides, bromides, and chlorides. , 2009, Journal of the American Chemical Society.

[27]  M. Kantam,et al.  Nanocrystalline copper(II) oxide catalyzed aza-Michael reaction and insertion of α-diazo compounds into N–H bonds of amines , 2009 .

[28]  H. Plenio Katalysatoren für die Sonogashira‐Kupplung – unedle Metalle auf dem Vormarsch , 2008 .

[29]  A. Corma,et al.  Catalysis by gold(I) and gold(III): a parallelism between homo- and heterogeneous catalysts for copper-free Sonogashira cross-coupling reactions. , 2007, Angewandte Chemie.

[30]  D. Morgan,et al.  The reactive chemisorption of alkyl iodides at Cu(110) and Ag(111) surfaces: a combined STM and XPS study. , 2005, The journal of physical chemistry. B.

[31]  G. Rothenberg,et al.  Palladium-free and ligand-free Sonogashira cross-coupling , 2004 .

[32]  J. M. Dickinson,et al.  Pd-catalysed cross coupling of terminal alkynes to diynes in the absence of a stoichiometric additive. , 2003, Chemical communications.

[33]  Xumu Zhang,et al.  Transmetalation of palladium enolate and its application in palladium-catalyzed homocoupling of alkynes: a room-temperature, highly efficient route to make diynes. , 2002, The Journal of organic chemistry.

[34]  B. Koel,et al.  Adsorption of iodobenzene (C6H5I) on Au(1 1 1) surfaces and production of biphenyl (C6H5-C6H5) , 2001 .

[35]  Diederich,et al.  Acetylenic Coupling: A Powerful Tool in Molecular Construction. , 2000, Angewandte Chemie.

[36]  T. Hiyama,et al.  Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate , 1988 .

[37]  Norio Miyaura,et al.  A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides , 1980 .

[38]  R. Heck,et al.  Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides , 1972 .

[39]  Richard F. Heck,et al.  Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives , 1968 .

[40]  F. Ullmann,et al.  Ueber Synthesen in der Biphenylreihe , 1901 .

[41]  Y. Tohda,et al.  A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines , 1975 .

[42]  C. Glaser Beiträge zur Kenntniss des Acetenylbenzols , 1869 .