Generalized four-flux radiative transfer model.

General solutions for a four-flux radiative transfer model, derivedfrom the radiative transfer equation and based on Lorenz-Miescattering and absorption parameters, have been obtained. Forwardand backward average path-length parameters have been considered aswell as forward-scattering ratios for diffuse anisotropic radiationgoing into the forward and the backward hemispheres. The reportedsolutions are generalizations of those obtained by Maheu et al. [Appl. Opt. 23, 3353-3362(1984)]. Compared with the generalized solutions, numericalcalculations indicate that the delta-Eddington approximation and thestandard four-flux model of Maheu et al. overestimate thecollimated-diffuse reflectance of particulate coatings, whereas thesemodels give similar results in the case of collimated-diffusetransmittance.

[1]  F. B. Yurevich,et al.  Radiation attenuation by disperse media , 1975 .

[2]  L Fukshansky,et al.  Estimation of optical parameters in a living tissue by solving the inverse problem of the multiflux radiative transfer. , 1991, Applied optics.

[3]  G Gouesbet,et al.  Four-flux models to solve the scattering transfer equation in terms of Lorenz-Mie parameters. , 1984, Applied optics.

[4]  Jim Swithenbank,et al.  The boundary condition of the PN-approximation used to solve the radiative transfer equation , 1992 .

[5]  W. Vargas,et al.  Generalized method for evaluating scattering parameters used in radiative transfer models , 1997 .

[6]  W. Vargas,et al.  Applicability conditions of the Kubelka-Munk theory. , 1997, Applied optics.

[7]  J. Joseph,et al.  The delta-Eddington approximation for radiative flux transfer , 1976 .

[8]  Gunnar A. Niklasson,et al.  Forward-scattering ratios and average pathlength parameter in radiative transfer models , 1997 .

[9]  L. Richards,et al.  Multiple scattering calculations for technology. , 1971, Applied optics.

[10]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[11]  J. Reichman Determination of absorption and scattering coefficients for nonhomogeneous media. 1: theory. , 1973, Applied optics.

[12]  J. I. Frankel,et al.  Computational attributes of the integral form of the equation of transfer , 1991 .

[13]  Gunnar A. Niklasson,et al.  Radiative Cooling With Pigmented Polyethylene Foils , 1989, Other Conferences.

[14]  E. P. Shettle,et al.  The Transfer of Solar Irradiance Through Inhomogeneous Turbid Atmospheres Evaluated by Eddington's Approximation , 1970 .

[15]  H. R. Wilson,et al.  Transmission variation using scattering / transparent switching films , 1993 .

[16]  W. Vargas,et al.  Pigment mass density and refractive index determination from optical measurements , 1997 .

[17]  W. Vargas,et al.  Forward average path-length parameter in four-flux radiative transfer models. , 1997, Applied optics.

[18]  F. Billmeyer,et al.  Scattering and Absorption of Light in Turbid Media , 1967 .

[19]  K. Klier,et al.  Absorption and Scattering in Plane Parallel Turbid Media , 1972 .

[20]  G Gouesbet,et al.  Four-flux models to solve the scattering transfer equation: special cases. , 1986, Applied optics.

[21]  W. Weaver,et al.  Two-Stream Approximations to Radiative Transfer in Planetary Atmospheres: A Unified Description of Existing Methods and a New Improvement , 1980 .

[22]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[23]  A. Schuster Radiation through a foggy atmosphere , 1903 .

[24]  S. Ito Optical wave propagation in discrete random media with large particles: a treatment of the phase function. , 1993, Applied optics.

[25]  W. Vargas,et al.  Intensity of diffuse radiation in particulate media , 1997 .

[26]  P. Kubelka Ein Beitrag zur Optik der Farban striche , 1931 .

[27]  Stuart W. Churchill,et al.  Numerical Solution of Problems in Multiple Scattering of Electromagnetic Radiation , 1955 .

[28]  Michael D. King,et al.  Comparative accuracy of diffuse radiative properties computed using selected multiple scattering approximations , 1993 .