Nonlinear-dynamical arrhythmia control in humans

Nonlinear-dynamical control techniques, also known as chaos control, have been used with great success to control a wide range of physical systems. Such techniques have been used to control the behavior of in vitro excitable biological tissue, suggesting their potential for clinical utility. However, the feasibility of using such techniques to control physiological processes has not been demonstrated in humans. Here we show that nonlinear-dynamical control can modulate human cardiac electrophysiological dynamics by rapidly stabilizing an unstable target rhythm. Specifically, in 52/54 control attempts in five patients, we successfully terminated pacing-induced period-2 atrioventricular-nodal conduction alternans by stabilizing the underlying unstable steady-state conduction. This proof-of-concept demonstration shows that nonlinear-dynamical control techniques are clinically feasible and provides a foundation for developing such techniques for more complex forms of clinical arrhythmia.

[1]  B B Lerman,et al.  The role of nonlinear dynamics in cardiac arrhythmia control. , 1999, Heart disease.

[2]  Leon Glass,et al.  Dynamics of Cardiac Arrhythmias , 1996 .

[3]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[4]  L Glass,et al.  Alternans and period-doubling bifurcations in atrioventricular nodal conduction. , 1995, Journal of theoretical biology.

[5]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[6]  A Garfinkel,et al.  Quasiperiodicity and chaos in cardiac fibrillation. , 1997, The Journal of clinical investigation.

[7]  Martienssen,et al.  Controlling chaos experimentally in systems exhibiting large effective Lyapunov exponents. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[9]  K. Narayanan,et al.  On the evidence of deterministic chaos in ECG: Surrogate and predictability analysis. , 1998, Chaos.

[10]  Gauthier,et al.  Stabilizing unstable periodic orbits in fast dynamical systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Gauthier,et al.  Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  A. Garfinkel,et al.  Chaos and the transition to ventricular fibrillation: a new approach to antiarrhythmic drug evaluation. , 1999, Circulation.

[13]  R J Sung,et al.  Electrophysiologic Identification of Dual Atrioventricular Nodal Pathway Conduction in Patients with Reciprocating Tachycardia Using Anomalous Bypass Tracts , 1979, Circulation.

[14]  L. Glass,et al.  DYNAMIC CONTROL OF CARDIAC ALTERNANS , 1997 .

[15]  A. Panfilov,et al.  Spiral breakup as a model of ventricular fibrillation. , 1998, Chaos.

[16]  Marc Courtemanche,et al.  Complex spiral wave dynamics in a spatially distributed ionic model of cardiac electrical activity. , 1996, Chaos.

[17]  G V Osipov,et al.  Using weak impulses to suppress traveling waves in excitable media. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  David J. Christini,et al.  Control of chaos in excitable physiological systems: A geometric analysis. , 1997, Chaos.

[19]  A V Holden,et al.  Control of re-entrant activity in a model of mammalian atrial tissue , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  Grigory V. Osipov,et al.  CONTROLLED MOVEMENT AND SUPPRESSION OF SPIRAL WAVES IN EXCITABLE MEDIA , 1998 .

[21]  R. Damle,et al.  Spatial and Temporal Linking of Epicardial Activation Directions During Ventricular Fibrillation in Dogs: Evidence for Underlying Organization , 1992, Circulation.

[22]  Karma,et al.  Spiral breakup in model equations of action potential propagation in cardiac tissue. , 1993, Physical review letters.

[23]  A. D. Jose,et al.  Autonomic blockade by propranolol and atropine to study intrinsic myocardial function in man. , 1969, The Journal of clinical investigation.

[24]  Michael Small,et al.  Deterministic nonlinearity in ventricular fibrillation. , 2000, Chaos.

[25]  Mantel,et al.  Periodic forcing of spiral waves in excitable media. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Müller,et al.  Feedback-controlled dynamics of meandering spiral waves. , 1995, Physical review letters.

[27]  Leon Glass,et al.  Bifurcations in Flat-Topped Maps and the Control of Cardiac Chaos , 1994 .

[28]  W. M. Smith,et al.  Spatial organization, predictability, and determinism in ventricular fibrillation. , 1998, Chaos.

[29]  David J. Christini,et al.  Real-time, adaptive, model-independent control of low-dimensional chaotic and nonchaotic dynamical systems , 1997 .

[30]  A Garfinkel,et al.  Ventricular fibrillation: one spiral or many? , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  Christini,et al.  Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  L. J. Leon,et al.  Spatiotemporal evolution of ventricular fibrillation , 1998, Nature.

[33]  D. T. Kaplan,et al.  Is fibrillation chaos? , 1990, Circulation research.

[34]  R J Cohen,et al.  Electrical alternans and cardiac electrical instability. , 1988, Circulation.

[35]  A Garfinkel,et al.  From local to global spatiotemporal chaos in a cardiac tissue model. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Flavio H. Fenton,et al.  SPATIOTEMPORAL CONTROL OF WAVE INSTABILITIES IN CARDIAC TISSUE , 1999 .

[37]  O. Narula Cardiac arrhythmias: Electrophysiology, diagnosis, and management , 1979 .

[38]  Valery Petrov,et al.  A map‐based algorithm for controlling low‐dimensional chaos , 1992 .

[39]  R. Gilmour,et al.  Electrical restitution and spatiotemporal organization during ventricular fibrillation. , 1999, Circulation research.

[40]  E. Prystowsky,et al.  Effects of Intravenous and Chronic Oral Verapamil Administration in Patients with Supraventricular Tachyarrhythmias , 1980, Circulation.

[41]  S Yasui,et al.  Significance of discordant ST alternans in ventricular fibrillation. , 1990, Circulation.

[42]  P. Wolf,et al.  A Quantitative Measurement of Spatial Orderin Ventricular Fibrillation , 1993, Journal of cardiovascular electrophysiology.

[43]  A Garfinkel,et al.  Spatiotemporal complexity of ventricular fibrillation revealed by tissue mass reduction in isolated swine right ventricle. Further evidence for the quasiperiodic route to chaos hypothesis. , 1997, The Journal of clinical investigation.

[44]  Christini,et al.  Experimental control of high-dimensional chaos: The driven double pendulum. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  E. Hunt Stabilizing high-period orbits in a chaotic system: The diode resonator. , 1991 .

[46]  Visarath In,et al.  Control of Human Atrial Fibrillation , 2000, Int. J. Bifurc. Chaos.

[47]  Christini,et al.  Using noise and chaos control to control nonchaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  Richard A. Gray,et al.  Self-organization and the dynamical nature of ventricular fibrillation. , 1998, Chaos.

[49]  Bruce J. West,et al.  Some observations on the questions: is ventricular fibrillation chaos? , 1996 .

[50]  Mari Watanabe,et al.  Strategy for control of complex low-dimensional dynamics in cardiac tissue , 1996, Journal of mathematical biology.

[51]  J. Ruskin,et al.  Electrical alternans and vulnerability to ventricular arrhythmias. , 1994, The New England journal of medicine.

[52]  A V Holden,et al.  Design principles of a low voltage cardiac defibrillator based on the effect of feedback resonant drift. , 1994, Journal of theoretical biology.

[53]  K. Showalter,et al.  Controlling chemical chaos , 1991 .

[54]  Guanrong Chen,et al.  LINEAR TIME-DELAY FEEDBACK CONTROL OF A PATHOLOGICAL RHYTHM IN A CARDIAC CONDUCTION MODEL , 1997 .

[55]  R J Cohen,et al.  Predicting Sudden Cardiac Death From T Wave Alternans of the Surface Electrocardiogram: , 1996, Journal of cardiovascular electrophysiology.

[56]  A. Karma Electrical alternans and spiral wave breakup in cardiac tissue. , 1994, Chaos.

[57]  L. Glass,et al.  Alternation of Atrioventricular Nodal Conduction Time During Atrioventricular Reentrant Tachycardia: , 1996, Journal of cardiovascular electrophysiology.

[58]  Roy,et al.  Controlling hyperchaos in a multimode laser model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  H M Hastings,et al.  Nonlinear dynamics in ventricular fibrillation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Alexander S. Mikhailov,et al.  Controlling Spiral Waves in Confined Geometries by Global Feedback , 1997 .

[61]  A Garfinkel,et al.  Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation. , 2000, Biophysical journal.

[62]  J Jalife,et al.  Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. , 2000, Circulation research.

[63]  Collins,et al.  Controlling nonchaotic neuronal noise using chaos control techniques. , 1995, Physical review letters.

[64]  A. Winfree,et al.  Electrical turbulence in three-dimensional heart muscle. , 1994, Science.

[65]  D J Christini,et al.  Adaptive estimation and control method for unstable periodic dynamics in spike trains. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[67]  Ditto,et al.  Evidence for determinism in ventricular fibrillation. , 1995, Physical review letters.

[68]  R. Gray,et al.  Spatial and temporal organization during cardiac fibrillation , 1998, Nature.

[69]  William L. Ditto,et al.  Removal, Suppression, and Control of Chaos by Nonlinear Design , 1995 .

[70]  Ditto,et al.  Experimental control of chaos. , 1990, Physical review letters.

[71]  D. Rosenbaum,et al.  Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. , 1999, Circulation.

[72]  Roy,et al.  Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. , 1992, Physical review letters.

[73]  R. A. Gray,et al.  Mechanisms of Cardiac Fibrillation , 1995, Science.

[74]  Guanrong Chen,et al.  FEEDBACK CONTROL OF A QUADRATIC MAP MODEL OF CARDIAC CHAOS , 1996 .

[75]  A V Holden,et al.  Reentrant waves and their elimination in a model of mammalian ventricular tissue. , 1998, Chaos.