Early structure in ΛCDM

We use a novel technique to simulate the growth of one of the most massive progenitors of a supercluster region from redshift z ∼ 80, when its mass was about 10 M ○. , until the present day. Our nested sequence of N-body resimulations allows us to study in detail the structure both of the dark matter object itself and of its environment. Our effective resolution is optimal at redshifts of 49, 29, 12, 5 and 0 when the dominant object has mass 1.2 x 10 5 ,5 × 10 7 ,2 × 10 10 , 3 x 10 12 and 8 × 10 14 h -1 M ○. , respectively, and contains ∼10 6 simulation particles within its virial radius. Extended Press-Schechter (EPS) theory correctly predicts both this rapid growth and the substantial overabundance of massive haloes we find at early times in regions surrounding the dominant object. Although the large-scale structure in these regions differs dramatically from a scaled version of its present-day counterpart, the internal structure of the dominant object is remarkably similar. Molecular hydrogen cooling could start as early as z ∼ 49 in this object, while cooling by atomic hydrogen becomes effective at z ∼ 39. If the first stars formed in haloes with virial temperature ∼ 2000 K, their comoving abundance at z = 49 should be similar to that of dwarf galaxies today, while their comoving correlation length should be ∼2.5 h -1 Mpc.

[1]  T. Greif,et al.  The First Stars , 2003, astro-ph/0311019.

[2]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[3]  G. Lake,et al.  Dark matter subhaloes in numerical simulations , 2004, astro-ph/0406034.

[4]  J. Stadel,et al.  Convergence and scatter of cluster density profiles , 2004, astro-ph/0402267.

[5]  Y. Yoshii,et al.  Mass Function of Low-Mass Dark Halos , 2004, astro-ph/0401097.

[6]  S. White,et al.  Early Formation and Late Merging of the Giant Galaxies , 2003, astro-ph/0312499.

[7]  N. Yoshida,et al.  The Era of Massive Population III Stars: Cosmological Implications and Self-Termination , 2003, astro-ph/0310443.

[8]  A. Loeb,et al.  Unusually Large Fluctuations in the Statistics of Galaxy Formation at High Redshift , 2003, astro-ph/0310338.

[9]  Garching,et al.  Substructures in cold dark matter haloes , 2003, astro-ph/0306205.

[10]  L. Verde,et al.  Evolution of the density profiles of dark matter haloes , 2003, astro-ph/0312544.

[11]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[12]  P. Madau,et al.  Probing beyond the Epoch of Hydrogen Reionization with 21 Centimeter Radiation , 2003, astro-ph/0303249.

[13]  N. Yoshida,et al.  Simulations of Early Structure Formation: Primordial Gas Clouds , 2003, astro-ph/0301645.

[14]  G. Lake,et al.  Evolution of the mass function of dark matter haloes , 2003, astro-ph/0301270.

[15]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[16]  S. White,et al.  The abundance and clustering of dark haloes in the standard ΛCDM cosmogony , 2002, astro-ph/0202393.

[17]  S. White,et al.  Gas cooling in simulations of the formation of the galaxy population , 2002, astro-ph/0202341.

[18]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[19]  R. Sheth,et al.  An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier , 2001, astro-ph/0105113.

[20]  P. Coppi,et al.  The Formation of the First Stars. I. The Primordial Star-forming Cloud , 2001, astro-ph/0102503.

[21]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[22]  N. Yoshida,et al.  Non-Gaussian cosmic microwave background temperature fluctuations from peculiar velocities of clusters , 2001, astro-ph/0104332.

[23]  H. Couchman,et al.  How big were the first cosmological objects , 2001, astro-ph/0102117.

[24]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[25]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[26]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[27]  H. Couchman,et al.  Simulation of Primordial Object Formation , 2000, astro-ph/0003079.

[28]  G. Lake,et al.  Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution , 1999, astro-ph/9910166.

[29]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[30]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[31]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[32]  Y. Jing,et al.  Accurate Fitting Formula for the Two-Point Correlation Function of Dark Matter Halos , 1998, astro-ph/9805202.

[33]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[34]  Max Tegmark,et al.  How Small Were the First Cosmological Objects? , 1996, astro-ph/9603007.

[35]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[36]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[37]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[38]  J. Silk,et al.  Cosmology and large scale structure , 1996 .

[39]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – II. Dynamics of the baryonic component in galactic haloes , 1994 .

[40]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[41]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[42]  R. Bower The evolution of groups of galaxies in the Press-Schechter formalism , 1991 .

[43]  S. Cole,et al.  Biased clustering in the cold dark matter cosmogony , 1989 .

[44]  Carlos S. Frenk,et al.  Gravitational clustering from scale-free initial conditions , 1988 .

[45]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[46]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[47]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .