The metastatic niche: adapting the foreign soil

[1]  R. Locke,et al.  Tilling the Soil , 1998 .

[2]  J. Bingham Letter: Lower oesophageal sphincter. , 1974, Lancet.

[3]  S. Rafii,et al.  Inflammation joins the "niche". , 2008, Cancer cell.

[4]  J. Pollard Tumour-educated macrophages promote tumour progression and metastasis , 2004, Nature Reviews Cancer.

[5]  D. Scadden,et al.  The stem-cell niche as an entity of action , 2006, Nature.

[6]  Raghu Kalluri,et al.  Fibroblasts in cancer , 2006, Nature Reviews Cancer.

[7]  L. Weiner,et al.  Tumors and Their Microenvironments: Tilling the Soil , 2003 .

[8]  C. López-Otín,et al.  Emerging roles of proteases in tumour suppression , 2007, Nature Reviews Cancer.

[9]  S. M. Sims,et al.  Regulation of cancer cell migration and bone metastasis by RANKL , 2006, Nature.

[10]  S. Morrison,et al.  Prospective identification of tumorigenic breast cancer cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Masahiko Zuka,et al.  Platelet glycoprotein Ibα supports experimental lung metastasis , 2007, Proceedings of the National Academy of Sciences.

[12]  S. Vandenberg,et al.  HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. , 2008, Cancer cell.

[13]  R. Altman,et al.  Investigating hypoxic tumor physiology through gene expression patterns , 2003, Oncogene.

[14]  D. Ribatti,et al.  Endothelial cell heterogeneity and organ specificity. , 2002, Journal of hematotherapy & stem cell research.

[15]  M. Stöhr,et al.  Suggestive evidence that the highly metastatic variant ESB of the T‐cell lymphoma eb is derived from spontaneous fusion with a host macrophage , 1984, International journal of cancer.

[16]  Andy J. Minn,et al.  Genes that mediate breast cancer metastasis to lung , 2005, Nature.

[17]  Z. Werb,et al.  Location, location, location: the cancer stem cell niche. , 2007, Cell stem cell.

[18]  Leonard Weiss Cancer cell traffic from the lungs to the liver: An example of metastatic inefficiency , 1980, International journal of cancer.

[19]  K. Alitalo,et al.  VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. , 2007, Blood.

[20]  S. Rafii,et al.  Impaired recruitment of bone-marrow–derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth , 2001, Nature Medicine.

[21]  I. Fidler,et al.  Metastasis results from preexisting variant cells within a malignant tumor. , 1977, Science.

[22]  D. Hanahan,et al.  Direct Test of Potential Roles of EIIIA and EIIIB Alternatively Spliced Segments of Fibronectin in Physiological and Tumor Angiogenesis , 2004, Molecular and Cellular Biology.

[23]  S. Larson,et al.  A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[24]  Raghu Kalluri,et al.  Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. , 2008, Journal of the American Society of Nephrology : JASN.

[25]  N. Ferrara,et al.  Endocrine gland–derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis , 2002, Nature Medicine.

[26]  Jun Wang,et al.  Integrin-Mediated Adhesion and Signaling during Blastocyst Implantation , 2002, Cells Tissues Organs.

[27]  D. Hanahan,et al.  Multiple Roles for Cysteine Cathepsins in Cancer , 2004, Cell cycle.

[28]  Kedar S Vaidya,et al.  Breast Cancer Metastasis Suppressor-1 Differentially Modulates Growth Factor Signaling* , 2008, Journal of Biological Chemistry.

[29]  H. Dvorak,et al.  Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. , 1988, The American journal of pathology.

[30]  Mina J Bissell,et al.  Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. , 2008, Seminars in cancer biology.

[31]  J. Erler,et al.  Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. , 2009, Cancer cell.

[32]  P. Libby Role of inflammation in atherosclerosis associated with rheumatoid arthritis. , 2008, The American journal of medicine.

[33]  M. Ratajczak,et al.  Trafficking of Normal Stem Cells and Metastasis of Cancer Stem Cells Involve Similar Mechanisms: Pivotal Role of the SDF‐1–CXCR4 Axis , 2005, Stem cells.

[34]  L. Chin The genetics of malignant melanoma: lessons from mouse and man , 2003, Nature Reviews Cancer.

[35]  Ross Tubo,et al.  Mesenchymal stem cells within tumour stroma promote breast cancer metastasis , 2007, Nature.

[36]  J. Erler,et al.  Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow-derived cell recruitment to form the pre-metastatic niche , 2009 .

[37]  S. Morrison,et al.  Uncertainty in the niches that maintain haematopoietic stem cells , 2008, Nature Reviews Immunology.

[38]  S. Nilsson,et al.  Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. , 2001, Blood.

[39]  I. Stamenkovic,et al.  Induction of Apoptosis of Metastatic Mammary Carcinoma Cells In Vivo by Disruption of Tumor Cell Surface CD44 Function , 1997, The Journal of experimental medicine.

[40]  Lawrence Steinman,et al.  Nuanced roles of cytokines in three major human brain disorders. , 2008, The Journal of clinical investigation.

[41]  D. Jin,et al.  Regulation of Vasculogenesis by Platelet-Mediated Recruitment of Bone Marrow–Derived Cells , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[42]  E. Mayhew,et al.  Metastatic inefficiency in mice bearing B16 melanomas. , 1982, British Journal of Cancer.

[43]  R. Kaplan,et al.  Niche-to-niche migration of bone-marrow-derived cells. , 2007, Trends in molecular medicine.

[44]  I. Fidler,et al.  Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. , 2007, Endocrine reviews.

[45]  P. Cooke,et al.  Mechanistic Insights into the Regulation of the Spermatogonial Stem Cell Niche , 2006, Cell cycle.

[46]  L. Akslen,et al.  Role of Angiogenesis in Human Tumor Dormancy: Animal Models of the Angiogenic Switch , 2006, Cell cycle.

[47]  W. Gerald,et al.  Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. , 2005, The Journal of clinical investigation.

[48]  P. Kuo,et al.  Osteopontin: regulation in tumor metastasis , 2008, Cancer and Metastasis Reviews.

[49]  S. Morrison,et al.  Supplemental Experimental Procedures , 2022 .

[50]  R. Kaplan,et al.  Priming the 'soil' for breast cancer metastasis: the pre-metastatic niche. , 2006, Breast disease.

[51]  D. McDonald,et al.  Significance of blood vessel leakiness in cancer. , 2002, Cancer research.

[52]  Edi Brogi,et al.  ID genes mediate tumor reinitiation during breast cancer lung metastasis , 2007, Proceedings of the National Academy of Sciences.

[53]  Linheng Li,et al.  The stem cell niches in bone. , 2006, The Journal of clinical investigation.

[54]  V. Castronovo,et al.  Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer , 2008, Nature Reviews Cancer.

[55]  D. Scadden,et al.  Osteoblastic cells regulate the haematopoietic stem cell niche , 2003, Nature.

[56]  L. Weiss,et al.  Arrest and retention of circulating cancer cells in the lungs of animals with defined metastatic status. , 1982, Cancer research.

[57]  Li Yang,et al.  Transforming Growth Factor B : Tumor Suppressor or Promoter ? Are Host Immune Cells the Answer ? , 2008 .

[58]  Jun Wang,et al.  Integrin signaling regulates blastocyst adhesion to fibronectin at implantation: intracellular calcium transients and vesicle trafficking in primary trophoblast cells. , 2002, Developmental biology.

[59]  A. Gressner,et al.  Tumor‐dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis , 1997, Hepatology.

[60]  L. Weiss,et al.  Metastatic inefficiency. , 1990, Advances in cancer research.

[61]  Hiroyuki Aburatani,et al.  Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis , 2006, Nature Cell Biology.

[62]  I. Stamenkovic,et al.  Redirection of tumor metastasis by expression of E-selectin in vivo , 1996, The Journal of experimental medicine.

[63]  Jordi Alcaraz,et al.  Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia , 2008, The EMBO journal.

[64]  D. Carbone,et al.  Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. , 2008, Cancer cell.

[65]  J. Folkman Role of angiogenesis in tumor growth and metastasis. , 2002, Seminars in oncology.

[66]  H. Ishwaran,et al.  Lung metastasis genes couple breast tumor size and metastatic spread , 2007, Proceedings of the National Academy of Sciences.

[67]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[68]  Satoshi Hirakawa,et al.  VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis , 2005, The Journal of experimental medicine.

[69]  A. Koch,et al.  Mechanisms of Disease: angiogenesis in inflammatory diseases , 2007, Nature Clinical Practice Rheumatology.

[70]  Lars Holmgren,et al.  Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression , 1995, Nature Medicine.

[71]  A. Chakraborty,et al.  Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis , 2008, Nature Reviews Cancer.

[72]  I. Macdonald,et al.  Metastasis: Dissemination and growth of cancer cells in metastatic sites , 2002, Nature Reviews Cancer.

[73]  G. Mundy The premetastatic niche , 2008 .

[74]  M. Kitagawa,et al.  TSU68 prevents liver metastasis of colon cancer xenografts by modulating the premetastatic niche. , 2008, Cancer research.

[75]  A. Mantovani,et al.  Cancer: Inflaming metastasis , 2008, Nature.

[76]  M. Detmar,et al.  Tumor lymphangiogenesis and melanoma metastasis , 2008, Journal of cellular physiology.

[77]  Dennis C. Sgroi,et al.  Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion , 2005, Cell.

[78]  Linheng Li,et al.  Normal stem cells and cancer stem cells: the niche matters. , 2006, Cancer research.

[79]  J. Folkman,et al.  Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. , 2008, Blood.

[80]  Sabine Riethdorf,et al.  Circulating Tumor Cells and Bone Marrow Micrometastasis , 2008, Clinical Cancer Research.

[81]  Andrew J. Ewald,et al.  Matrix metalloproteinases and the regulation of tissue remodelling , 2007, Nature Reviews Molecular Cell Biology.

[82]  P. Steeg Metastasis suppressors alter the signal transduction of cancer cells , 2003, Nature Reviews Cancer.

[83]  P. Allavena,et al.  Cancer-related inflammation , 2008, Nature.

[84]  S Paget,et al.  THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. , 1889 .

[85]  Quynh-Thu Le,et al.  Lysyl oxidase is essential for hypoxia-induced metastasis , 2006, Nature.

[86]  A. Mantovani,et al.  Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice. , 1990, Cancer research.

[87]  M. Shibuya,et al.  MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. , 2002, Cancer cell.

[88]  J. Pollard,et al.  Tumor-associated macrophages press the angiogenic switch in breast cancer. , 2007, Cancer research.

[89]  L. Weiner,et al.  Tumors and their microenvironments: tilling the soil. Commentary re: A. M. Scott et al., A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res., 9: 1639-1647, 2003. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[90]  Shahin Rafii,et al.  Migratory neighbors and distant invaders: tumor-associated niche cells. , 2008, Genes & development.

[91]  W. Gerald,et al.  Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts , 1999, Nature.

[92]  P. Libby,et al.  The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models , 2008, Nature Reviews Immunology.

[93]  A. Vincent-Salomon,et al.  A “class action” against the microenvironment: do cancer cells cooperate in metastasis? , 2008, Cancer and Metastasis Reviews.

[94]  K. L. Woodward,et al.  A question of life or death. , 2001, Newsweek.

[95]  D. Nolan,et al.  Endothelial Progenitor Cells Control the Angiogenic Switch in Mouse Lung Metastasis , 2008, Science.

[96]  D. Duda,et al.  In vivo evaluation of the early events associated with liver metastasis of circulating cancer cells , 2001, British Journal of Cancer.

[97]  P. Taupin Adult neural stem cells, neurogenic niches, and cellular therapy , 2006, Stem Cell Reviews.

[98]  S. Friedman,et al.  Proangiogenic role of tumor‐activated hepatic stellate cells in experimental melanoma metastasis , 2003, Hepatology.

[99]  Wenjun Guo,et al.  The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells , 2008, Cell.

[100]  Fan Zhang,et al.  Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes , 2006, Nature Medicine.

[101]  I. Fidler,et al.  Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. , 1980, Cancer research.

[102]  Jiwang Zhang,et al.  Stem Cell Niche: Microenvironment and Beyond* , 2008, Journal of Biological Chemistry.

[103]  Harold Varmus,et al.  Seeding and Propagation of Untransformed Mouse Mammary Cells in the Lung , 2008, Science.

[104]  J. Serody,et al.  Tumorigenesis and Neoplastic Progression C-C Chemokine Receptor 5 on Pulmonary Fibrocytes Facilitates Migration and Promotes Metastasis via Matrix Metalloproteinase 9 , 2010 .

[105]  A. Chakraborty,et al.  The cancer cell--leukocyte fusion theory of metastasis. , 2008, Advances in cancer research.

[106]  F. Peale,et al.  Identification of an angiogenic mitogen selective for endocrine gland endothelium , 2001, Nature.

[107]  S. Rafii,et al.  VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche , 2005, Nature.

[108]  A. Puisieux,et al.  Metastasis: a question of life or death , 2006, Nature Reviews Cancer.

[109]  Hiroyuki Aburatani,et al.  The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase , 2008, Nature Cell Biology.

[110]  Mina J. Bissell,et al.  Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging , 2008, Histochemistry and Cell Biology.

[111]  Roger R. Gomis,et al.  TGFβ Primes Breast Tumors for Lung Metastasis Seeding through Angiopoietin-like 4 , 2008, Cell.

[112]  Wan-Wan Lin,et al.  Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis , 2009, Nature.